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points in the traditional layered network model: wireless overlay networking, transport layer performance
optimizations, a scalable proxy (middleware) subsystem, and application-level network services. We show how
the interaction of these components enables “anytime, anywhere” wireless access that is easy to use, delivering
the best performance available at any given time while adapting intelligently to a wide range of network conditions
and client device characteristics. We describe our progress to date in implementing the architecture, as well as
what we see as remaining milestones and future work.

Online project information and publications: http://daedalus.cs.berkeley.edu



DRAFT

2 A Network Architecture for Heterogeneous Mobile Computing



DRAFT

3

1 Introduction 7
1.1 Routing to Mobile Hosts: Overlay Networking 8

1.1.1 Overlay Networking Details 10
1.2 Transport Performance: Optimizing the Network 12
1.3 Scalable Proxy 12
1.4 Network Services and Authentication 13
1.5 Key Assumptions (What Aren’t We Doing) 13
1.6 Summary 14

2 Overlay Networking 15
2.1 Overview 15
2.2 Triggering Handoffs 16
2.3 Techniques for Low-Latency Vertical Handoffs 18

2.3.1 Hints for Enabling Enhancements 18
2.3.2 Enhancements 19

2.4 Differences between Vertical Handoff system and IETF Mobile
IP 20

2.5 Overlay Networking Summary 21

3 Reliable Data Transport Performance 23
3.1 The Snoop Protocol 24
3.2 Asymmetric Networks 26
3.3 Link Sharing for Wireless LANs 29
3.4 Bandwidth Sharing 29

3.4.1 Surplus Bandwidth Distribution 31
3.5 Summary 32

4 The Scalable Proxy and Coordination Bus 33
4.1 The Coordination Bus 33
4.2 The Proxy Architecture 34

4.2.1 The Proxy Front End 34
4.2.2 Workers 35
4.2.3 Proxy Transcoder Manager (PTM) 36
4.2.4 Caching 37
4.2.5 Video Gateway 37
4.2.6 Control Panel 37
4.2.7 Dynamic Adaptation 38

4.3 Application, Transport, and User Interface Issues 38
4.4 Summary 40

5 Network Services 41
5.1 Controllable Objects 42

5.1.1 Aggregation 42
5.1.2 Naming 43
5.1.3 Shared Control Conflicts 43
5.1.4 Cameras as Object Interfaces 44

5.2 Service Advertisement and Discovery 44



DRAFT

4

5.3 Mapping Client Controls to Exported Objects 45
5.3.1 Transduction Protocols 45
5.3.2 Complex Behaviors 45

5.4 Implementing Service Interaction 46
5.4.1 Basic Operation 46
5.4.2 System Setup 46
5.4.3 Message-level Detail 48
5.4.4 Client Bootstrap 48
5.4.5 Beaconing 49
5.4.6 Charon: Proxied Secure Access 50
5.4.7 Scoped Access Control 51
5.4.8 Client Interfaces 52
5.4.9 Naming Scheme 53

5.5 Prototype Mobile Services 54
5.5.1 Maps 54
5.5.2 Proxy and Gateway Autoconfiguration 55
5.5.3 Location Tracking 56
5.5.4 Printer Access 56
5.5.5 Motorized Cameras 56
5.5.6 405 Soda Room Interaction 57
5.5.7 326 Soda Room Interaction 59

5.6 Discussion 59
5.7 Related Work 60
5.8 Continuing Work and Future Directions 61

5.8.1 Wide-area issues 61
5.8.2 Building control and support 61
5.8.3 Delegating operations 62
5.8.4 Queued RPC 62
5.8.5 Maps 62
5.8.6 Interface specification grammar and compiler 62
5.8.7 Fault tolerance 62
5.8.8 Geographic locality 62
5.8.9 Multimedia collaboration control architecture 63
5.8.10 Conference control primitives for lightweight sessions 63

5.9 Conclusions 64

6 The Network Stacks 65
6.1 The Basestation Network Stack 65

6.1.1 Black-Box Basestations 65
6.1.2 Dædalus-Aware Basestations 65

6.2 The Client Network Stack 67
6.3 The Proxy Network Stack (for Clients) 68
6.4 Network Stack Summary 68

7 Summary 71
7.1 The Principles Revisited 71
7.2 Summary 73

8 Glossary 75



DRAFT

5

9 References 79



DRAFT

6



Introduction DRAFT

7

1 Introduction

“People and their machines should be able to access information and communicate
with each other easily and securely, in any medium or combination of media —
voice, data, image, video, or multimedia —  any time, anywhere, in a timely, cost-
effective way.” 

Dr. George H. Heilmeier
IEEE Communication

October 1992

More than any other, this statement captures the broad goals of our project and the resulting
architecture that is the subject of this document. The highlighted words carry tremendous conse-
quences that form the driving principles of this work —  in fact, we will derive the principles from
these words, and the architecture from these principles.

Access Our mantra is “Access is the Killer App”, by which we mean that the key to
mobile computing and portable devices —  PDA’s, smart phones, and laptops
—  is not an application per se, but rather access to both my desktop environ-
ment (at home or office) and to the internet at large.

Anytime, Anywhere The infrastructure required for this access must be permanently deployed
and readily available from everywhere. Everywhere includes indoors, out-
doors, in cities and in remote regions.

Principle 1: Heterogeneous Networks: The infrastructure must include wire-
less networks that have a mixture of global and indoor coverage,
thus requiring a heterogeneous collection of networks.

To optimize network performance, we must use support a variety of net-
works and pick the best among them for the current location. We call this
Overlay Networking, since a set of networks are overlaid onto the same
physical area.

Principle 2: Scalable: The infrastructure must scale to support millions of
users.

Principle 3: Highly Available: The infrastructure must be available all of the
time.

Easily It is not enough to have access; that access must be simple to use.

Principle 4: Transparent Access: The detection and setup of a network con-
nection should be automatic. Users shouldn’t have to know what
networks are in range.

Principle 5: Localized Service: The detection and setup of local network ser-
vices should be automatic. Users shouldn’t have to know what
services are available at their current location.
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Securely Access to your own stuff requires authentication. Access to local resources
may also require authentication, since not all visitors are treated the same.

Principle 6: Global Authentication: We must authenticate users using a glo-
bally available security infrastructure, such as public-key cryp-
tography or Kerberos.

Any Medium We must deal with a wide variety of data.

Principle 7: Multimedia: The infrastructure must support graphics, audio
and video in addition to text.

Timely The performance should be the best possible (for the current location).

Principle 8: Performance: The user’s data should arrive as fast as possible.
This includes selecting the best network, optimizing the network
performance, and optimizing the content at the application level.

Cost Effective The infrastructure should be designed to minimize the costs and share and
amortize resources as much as possible.

Principle 9: Heterogeneous Clients: Complexity should be pushed into the
infrastructure, where it can be amortized over all of the active
users. The infrastructure should support both inexpensive client
devices, such as smart phones, and more sophisticated comput-
ers, such as high-end laptops.

Even with some network-level optimizations, there will be times the network
performance is poor and we need application-level support. In particular, we
would like to optimize the data sent to reduce the demands on the client and
network without reducing the information content.

Principle 10: Dynamic Adaptation: The data sent to the user should be opti-
mized for timeliness, carrying the most information in the least
amount of time. The nature of this adaptation depends on the cur-
rent network, the preferences of the user, and the nature of the
data (text is much different than graphics).

These ten principles are driving forces behind the architecture. In the next four sections, we
look at the key elements of the architecture and see how they meet these principles. These elements
are largely orthogonal; they can be used independently of one another, but they do work well
together.

1.1 Routing to Mobile Hosts: Overlay Networking

Because we must deal with several overlapping networks to achieve the best performance, we
need a way to transparently switch networks. Furthermore, the best available network changes due
to mobility and congestion. Thus the first task of the architecture is simply to route packets to a
mobile host using the best available network. The overlay networking subsystem deals with the
detection of available networks, the selection of the best network, and the transparent switch to
either a another cell in the same network, or to a completely new network.
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Figure 1 shows a series of overlapping networks. The mobile host can be in any of the ovals,
and when in an oval it is typically also in an oval for each of the networks above it. For example, a
mobile host in a cell of an in-building network is typically also in a cell for each of the campus-
area, metropolitan-area and regional networks. The mobile host can move among these cells either
horizontally (within a network) or vertically (between networks); a cell transition is called a hand-
off, and overlay networking thus supports both vertical and horizontal handoffs.

Thus, the two key goals of overlay networking are to detect and monitor the currently available
networks and to manage handoffs. Thus overlay networking supports the principles of Heteroge-
neous Networks and Transparent Access. The former comes by definition, since it assume multi-
ple overlapping heterogeneous networks, and the latter comes from the detection of available
networks.

Overlay networking also helps with several other principles:

• Highly Available: by exploiting multiple networks, we achieve redundancy and
thus improve availability of connectivity.

• Localized Services: the use of multiple networks, especially those with small
cells, such as IR, helps the infrastructure with the location of the client. This in turn
enables accurate localized services. Note that just knowing which networks are
available provides location information.

• Performance: overlay network improves performance by selecting the best avail-
able network.

• Dynamic Adaptation: by knowing the current network used by a client, overlay
networking helps with the parameters for dynamic adaptation, i.e., we can more

FIGURE 1.  An overlay network with
four overlapping heterogeneous
networks.
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accurately tune the content for a user because we know the properties of their net-
work connection.

Given this high-level description of overlay networking, we now look a level deeper and
explore the mechanisms of used.

1.1.1 Overlay Networking Details

Figure 2 shows the basic architecture. The mobile host is on the left and the server is at the top
right. There are three overlaid networks shown, each as a horizontal plane; horizontal handoff
occurs between basestations on the same plane (network), while vertical handoff occurs between
the planes.

There are two kinds of basestations in practice: black-box basestations, those over which we
have no control, and Dædalus-aware basestations, we can influence enough to run our protocols.
This distinction is important since we want to exploit existing deployed networks over which we
have essentially no control. Typically, black-box basestations have proprietary protocols for net-
work detection and horizontal handoff. We can normally exploit the network detection stuff for our
purposes, but control of handoffs is usually out of our control. Thus, black-box basestations typi-
cally have the following responsibilities:

• Provide routing to client

• Manage local wireless network

With Dædalus-aware basestations, we have sufficient control such that we can control handoffs
fairly precisely; they have the following responsibilities:

• Provide beacon to client

• Optimize network against wireless losses

G WG W

IP
Internet

GW

GW

GW

Server

Proxy Host

Home Agent
Wireless Subnets

G W

Basestations Foreign
Agent

Local
Proxy Host

Local
Services

Horizontal
Handoff

Vertical
Handoff

Overlay IP

FIGURE 2.  The basic system architecture has four components above the network level. In addition to clients and servers,
basestations provide wireless connectivity, the home agent manages mobility and tracks the client, and proxies provides
content optimization and security.
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• Provide location information

• Bootstrap name server for new clients in their cell

The home agent is the official (non-mobile) location of the client. It keeps track of the actual
location and forwards packets to the current location of the client. Route optimization can be used
to avoid “triangle routing” through the home agent. Before such an optimization, all traffic must go
through the home agent. The key responsibilities of the home agent are to:

• Track client’s position and current IP address

• Forward packets to current location

• Set up optimized routes

These responsibilities mean that the server and proxy do not have deal with mobility.

Servers are unmodified (legacy) servers on the internet. It is also possible to integrate some of
the proxy responsibilities into the server.

The proxy, which is covered in more detail below, performs dynamic adaptation for the client of
the servers content. The proxy provides an indirect interface between clients and servers, thus hid-
ing network problems and changes from servers and allowing network and content optimization for
the client. Many clients may connect to a single proxy. Its responsibilities include:

• Provide optimized access to servers

• Manage connection to client

• Provide services and name server

• Optimize data formats

• Monitor network connectivity

• Enable end-to-end security for simple clients

• Track clients’ location

Finally, there are some local services associated with the (relatively small) region covered by
each basestation. For example, there might a local information web server or a local printer that is
available to users of the corresponding basestation.

The basic data flow is shown by the arrows. A client request, say an HTTP request, moves from
the client to the basestation to the proxy. The proxy will decide what do with it, but we’ll assume
that if forwards the request to the server. The sends the response to the proxy, which then sends it to
the Home Agent, since it doesn’t know where the mobile host is located.1 The Home Agent always
knows where the client is, so it forwards the data to the client through the appropriate network.

Handoffs thus require updating only the Home Agent (and the involved basestations). Handoffs
may occur either because the primary network becomes unavailable, or because a better network
has recently become available. Users may also force handoffs explicitly.

Network detection in Dædalus-aware basestations is performed by broadcasting periodic bea-
cons, which clients use to detect the basestation. Thus the availability of a basestation is indicated
by the reception of the beacon, and handoff depends on the measured quality of the multiple net-
work connections.

1. As an optimization, the proxy can keep track of the last known location as a hint. This is simi-
lar to “route optimization” in Mobile IP.
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At a high level, this a fairly complete picture of the architecture. The three major missing pieces
are the optimizations of the transport layer, the proxy, and available services. The next three sub-
sections cover these pieces.

1.2 Transport Performance: Optimizing the Network

There are many challenges presented by a heterogeneous collection of networks that together
provide wide-area wireless access anytime, anywhere. The primary problems are low bandwidth,
high error rates, asymmetric performance, and high latency. We have extended TCP to mitigate all
of these issues. We also multiplex many short connections to the same place over one long-lived
connection, called a “session”, which improves the performance of the connections.

Thus, the Transport Performance subsystem primarily supports the principle of Performance.
It also supports several other principles:

• Highly Available: The improved error handling increases the availability of the
network.

• Multimedia: By allowing the application to indicated its requirements through
delivery classes, the architecture allows better performance for multimedia data.
For example, we can avoid retransmitting lost audio or video packets, since they
would likely arrive too late to be useful and the rendering of the data will probably
be OK without these packets.

• Dynamic Adaptation: Because we can monitor the connection between the client
and the proxy, we can tune the content based on the actual bandwidth, thus maxi-
mizing the effectiveness of the transfer.

Although transport performance is largely an optimization in this architecture, the wide variety
of networks and network problems that we encounter indicates that these issues are not merely an
optimization, but required parts of practically useful system.

1.3 Scalable Proxy

A major component of the architecture is the scalable proxy, which provides dynamic adapta-
tion of data sent to the user based on the user’s device, network connectivity and preferences. It
thus provides timely data despite the limitations of the network, and acts as intermediary between
client and server, thus hiding any disconnections or client limitations.

The proxy manages all of the data seen by the client and uses caching to improve performance.
Thus, clients ask the proxy for a particular object and the proxy will get it either from the cache or
from the internet. The proxy also handles authentication in order to provide access to restricted
resources (such as a user’s own e-mail).

The proxy is the key method by which we meet the goals of Heterogeneous Clients and
Dynamic Adaptation. In particular, since heterogeneous clients can’t all handle standard servers
(e.g. HTML), the proxy transforms the data into formats that the client can handle. The proxy also
keeps track of user preferences and current network conditions in order to perform dynamic adapta-
tion in a way that increases the overall Performance of the system and supports Heterogeneous
Networks.

The proxy is also a key part of the Scalable, Highly Available architecture. It is designed to be
fault tolerant to scale to thousands of simultaneous users. By amortizing its resources over all of the
active users (but none of the inactive users), the proxy also leads to a more Cost Effective architec-
ture. 
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Finally, the proxy supports Multimedia (through translations for image, PostScript and video),
Localized Services (with name service), Global Authentication (by helping to authenticate
impoverished clients), and Transparent Access (by isolating mobility and connectivity problems
from legacy servers).

1.4 Network Services and Authentication

Finally, we provide mechanisms for the management and discovery of local resources, thus
making the network easier to use well. In addition to automatically selecting the best available net-
work, we provide a systematic way to automatically discover local resources such as maps or print-
ers that increase the value of being connected.

For restricted resources and services, we need authentication to enable restricted access. We
have designed and implemented an authentication system based on Kerberos [SNS88] that allows
inexpensive mobile devices to authenticate themselves end-to-end with the help an untrusted infra-
structure. This resolves the conflicting goals of global authentication with low-cost mobile clients
that can’t run Kerberos locally and don’t want to trust the local infrastructure with their credentials.

The Network Services subsystem is the key to the principles of Localized Service and Global
Authentication. It allows registration of local services and then provides those services to local cli-
ents. The authentication work allows users to access any Kerberos resource whether local or
remote. It supports Heterogeneous Networks and Heterogeneous Clients by allowing the varia-
tions to affect the available services. For example, the service that allows you to see who else is in
your cell clearly depends on the network in use.

The subsystem is Scalable and will be Highly Available in the near future. It supports Multi-
media by allowing a variety of local servers. Finally, it enables Transparent Access by automati-
cally determining the available services and by help clients find local proxies and other key
services such as SMTP and DNS.

1.5 Key Assumptions (What Aren’t We Doing)

Although this architecture is fairly complete vertical attack on the issues of heterogeneous
mobile computing, there are several areas that we do not innovate and instead limit ourselves to
what is already available.

Networks We do not develop any new networks. Although all of the available wireless
networks have shortcomings, developing a new network is substantial work
and is not really within our core knowledge base. Instead we take several
networks off of the shelf, although we may modify the link and transport lay-
ers.

Client Hardware We limit ourselves to existing client hardware and operating systems. We do
modify the networking and application software for the clients, but even that
we prefer to avoid when possible. Section 4.3 has a discussion of the benefits
of modifying the client software to use our application support layer (ASL).

Servers We assume legacy servers for HTTP, FTP, news and e-mail. Many of the
benefits of the proxy could be merged into servers, but we do not do so, and
even if we did we could not affect a significant fraction of the servers.
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1.6 Summary

Table 1 shows how these five elements support the driving principles. Because the elements are
orthogonal, you can determine from the table which elements are required for each goal. Note that
some elements help a goal but are not required to meet it. For example, the Overlay Networking
module helps with Localized Service by broadcasting the IP address of the local name server used
to discover services. The services could be provided without this help if the clients used some well-
known server to get the address.

We have provided an overview of principles and subsystems of the architecture. The next four
sections cover each of the major subsystems in more detail; they are intended to be fairly indepen-
dent, so that they may be read in any order or not at all. Section 6 combines all of the modules from
the network stack point of view, which helps to understand how the subsystems interact. We close
with a summary, glossary and a list of references.

TABLE 1:  Principles versus the Key Architecture Elements
(Gray boxes indicate Not Applicable)

Principle
Overlay 

Networking
Transport 

Performance Scalable Proxy Network Services
Heterogeneous 

Networks Required Helps Helps by adapting 
content Affects Services

Scalable Yes Yes

Highly Available Multiple networks Better Error Handling Yes Not Yet

Transparent 
Access Required Supports Supports

Localized Service Helps Supports Required

Global
Authentication Supports Required

Multimedia Delivery Classes Yes Local Servers

Performance Pick Best Network Optimize Network Optimize Content

Heterogeneous 
Clients

Assume TCP in most 
clients Required Affects Services

Dynamic
Adaptation Helps Provides feedback on 

network quality Required
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2 Overlay Networking

In this section we describe the work that our group has done in implementing mobility support
in Overlay Networks. This includes a Vertical Handoff system that enables mobility between heter-
ogeneous wireless networks. We present an overview of the basic system, enhancements to the
basic system for low-latency handoffs, and point out differences between our system and IETF
Mobile IP.

2.1 Overview

The handoff system is built on top of existing mobile routing capabilities which enhance the
Mobile IP specification [Per96] with a multicast-based one [Ses95] designed for low latency hand-
offs. Our work extends this enhanced multicast-based implementation by incorporating support for
multiple wireless network interfaces [Ste97]. As shown in Figure 3, Mobile Hosts (MHs) connect
to a wired infrastructure via Base Stations (BSs) which act as Foreign Agents (FAs). A Home
Agent (HA) performs the same functions as in Mobile IP, encapsulating packets from the source
and forwarding them to the FAs. One important difference in our implementation is that the care-of
address is a multicast rather than unicast address. A small group of BSs are selected by the mobile
to listen to this multicast address for packets encapsulated and sent by the HA. One of the BSs is
selected by the MH to be a forwarding BS; it decapsulates the packets sent by the HA and forwards
those packets to the MH. The other BSs are buffering BSs; they hold a small number of packets
from the HA in a circular buffer. When the mobile initiates a handoff, it instructs the old BS to
move from forwarding to buffering mode, and the new BS to move from buffering to forwarding
mode. The new BS forwards the buffered packets that the mobile has not yet received. For net-
works in which the BS infrastructure is not under our control, the Home Agent acts as the BS to the
Mobile Host; the FA functionality with respect to that wireless network is incorporated at the HA
machine instead of being incorporated at the gateway between the wired and wireless network.

BSs send out periodic beacons similar to Mobile IP foreign agent advertisements. The MH lis-
tens to these packets and determines which BS should forward packets for the mobile, which BSs
should buffer packets in anticipation of a handoff, and which BSs should belong to the multicast
group assigned for a single mobile.

Figure 4 shows a detailed breakdown of the state and agents that implement the handoff system.
The network layer of the Home Agent includes a translation table that maps from a MH’s home
address to a multicast care-of address. All incoming packets are compared against the entries in the
table. Matching packets are encapsulated and forwarded using the corresponding multicast care-of

Source Home Agent

BS
BS

Multicast Care-of Address

Forwarding
Buffering

Data

Mobile Host

BeaconsBeacons

FIGURE 3.  Overview of the Handoff System
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address. At each BS there is a translation table that maps a MH’s multicast care-of address to a
local address. The translation table also includes the state of the BS with respect to this MH (e.g.
buffering packets, forwarding packets, etc.). All incoming packets are compared against the entries
in the table and the operation in the table (forward to mobile, buffer packet for mobile, etc.) is per-
formed for matching packets. There are two user-level agents at the BS: a beacon agent that trans-
mits beacon packets, and a decapsulation agent that receives control messages from the MH that
modify the kernel-level translation table. The decapsulation agent manipulates the translation tables
from user-level using socket options. At the mobile host, there is a single translation table that
inserts the MH’s home address in all outgoing packets. There is also a network interface (NI)-spe-
cific table that keeps track of the number of packets that have arrived for the MH over each network
interface and filters out duplicate packets that are received over multiple network interfaces. A
user-level process can register a callback with the networking stack to be notified when changes
occur in this table. When more than a threshold number of packets arrives over a single interface,
the user-level process is notified. This table and the associated threshold notification callbacks are
used in the doublecasting schemes described in Section 2.3. There are two user-level agents at the
mobile host: a handoff controller that uses beacons to determine the overlay network and BS to
connect to, and a user control panel that allows the user to control the choice of network or BS to
use via advice, described in [Ste97].

2.2 Triggering Handoffs

In a network of homogeneous BSs, the relative signal strength of beacons is compared and the
BS with the highest is chosen as the forwarding BS. Figure 5(a) shows in detail the breakdown of a
horizontal handoff. The three vertical lines represent the old BS, the MH, and the new BS, respec-
tively, and the arrows represent messages sent from one machine to another. The BSs transmit
infrequent beacon packets to the broadcast address of the local subnet. Data packets are also for-

Translation Table 

Beacon Agent

Decap Agent

Socket
Options

(Incoming pkts)

Wired
NI

Wireless
NI

Translation Table 
Translation Table 

User Control

Handoff 

Beacons

Control
Messages

NI Filtering

Threshold
Notifications

Home Agent Base Station Mobile Host

Socket
Options

(Incoming pkts)

NI 1 NI 2

(Outgoing pkts)

Table

Panel 

Controller

Application

Transport (TCP)

Network (IP)

Data Link (NI)
Wired

NI

Advice

FIGURE 4.  Network Stack for Home Agent, Base Station, and Mobile Host
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warded from the old BS. At some point, the signal strength of the new BS is greater than that of the
old BS, and the MH initiates a handoff to the new BS. It instructs the new BS to stop buffering
packets and start forwarding packets to the MH. The MH also instructs the old BS to stop forward-
ing packets and start buffering packets. In the homogeneous handoff system, the handoff latency is
measured from the time the mobile decides that the new BS has a larger signal strength until the
first data packet arrives from it. 

In our system, while a MH roams within the cells that comprise a single overlay, handoffs hap-
pen just as in the original system. The MH uses a channel-specific metric to compare different BSs
and connects to the best one according to that metric. This allows the horizontal handoff system to
operate seamlessly underneath the vertical handoff system. For an overlay network that handles
mobility directly (for example, CDPD [CDPD] or Metricom’s Ricochet [Ricochet] network), our
system does nothing and lets that network make all mobility decisions.

 Figure 5(b) shows the breakdown of a typical vertical handoff. An upward handoff is initiated
when several beacons from the current overlay network are not received. The MH decides that the
current network is unreachable and hands over to the next higher network. Even though the MH
cannot directly hear the old overlay network, it must still instruct the BS of the old overlay to stop
forwarding packets. This request is routed through the new BS. The arrows represent the logical
endpoints of a message, not the path that the message takes from source to destination. Downward
vertical handoffs are initiated when several beacons are heard from a lower overlay’s NI. The MH
determines that the mobile is now within range of the lower overlay’s NI and switches to the lower
overlay. The handoff starts when the lower overlay becomes reachable or unreachable, and ends
when the first data packet forwarded from the new overlay network arrives at the MH. As previ-
ously mentioned, our system only depends on the presence or absence of packets to make vertical
handoff decisions. 

Old
BS

New
BS

MH

“Stop
Forwarding”

“Start
Forwarding”

La
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y

H
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ff

FIGURE 5.  (a) Breakdown of Horizontal Handoff
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FIGURE 5.  (b) Breakdown of Basic Upward
Vertical Handoff
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2.3 Techniques for Low-Latency Vertical Handoffs

One of the goals in our handoff system is to support interactive multimedia communication
across multiple network interfaces, and for these applications, a latency measured in seconds is
unacceptable. Even for non-real time applications such as non-interactive file transfers and WWW
browsing, a latency of several seconds will lead to a loss of multiple data segments. Previous work
has also shown that packet losses during handoff has detrimental effects on reliable transport proto-
cols such as TCP [Cac95]. With this in mind, we examined several enhancements to the base strat-
egy that allow us to reduce handoff latency.

2.3.1 Hints for Enabling Enhancements

The schemes described in this section are used in situations where the application indicates that
a low handoff latency (less than 300-500ms) is important, such as real time interactive voice or
video. Even when an application indicates that low-latency handoff is important, these enhance-
ments are not used continuously, because of bandwidth/power overheads. They are used only when
the mobile is in a situation where it may hand off soon. Note that this is not the same as determining
that a mobile must hand off immediately (i.e., the mobile is now disconnected). Alternative hints
can be used to predict that a handoff is likely. These include

• User input: The user can instruct the MH to be more aggressive about handoff by
using these enhancements. When the user is likely to leave the building, she can
put the MH in a mode that uses these enhancements. The user can take the MH out
of this state when not moving. 

• Received signal strength: Although signal strength indicators, when present, may
not be a good indicator of imminent handoff, they do well at indicating the distance
between a MH and BS. When a MH notices that the signal strength is gradually
decreasing it can assume that the user is moving away from a BS, and when the
signal strength is increasing a MH can assume that the user is moving toward a BS.
When the best BS that a MH can hear has a low signal strength that has been
decreasing, a MH can assume that a vertical handoff may be likely and start using
some of these enhancements.

• Geographic hints: We can use traces to predict which cells are the gateways to a
new overlay network. Although the overlapping nature of wireless overlays means
that a user can be potentially connected to multiple networks at once, the transi-
tions between networks are a function of the building geography. A vertical hand-
off is only possible from certain places in the building, and only certain cells cover
these locations (e.g. only one in-building RF cell is likely to cover the exit of an
office building). The BSs covering these cells could add information in their bea-
con packets indicating that this cell is near the exit to a building, and that a vertical
handoff to a wide-area network is likely.

• Handoff Frequency: The MH can also track the frequency of handoffs and use
these enhancements when more handoffs are occurring, indicating that movement
out of this overlay’s coverage is more likely. This approach has been suggested for
switching between high-tier and low-tier PCS systems [Tek91].

• Missing a single beacon: We mentioned in Section 2.2 that the MH waits for multi-
ple beacon packets before determining that an overlay is (un)reachable and switch-
ing to a new overlay. The MH could turn on some of these optimizations after
missing a single beacon packet, as an attempt to verify that an overlay is (un)reach-
able.
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2.3.2 Enhancements

We can make the following enhancements to reduce handoff latency. All of these enhancements
have some additional cost in terms of power or overhead bandwidth.

• Fast Beaconing (Figure 6(a)): The MH can selectively instruct a subset of the BSs
that are listening to its multicast group to transmit beacon packets at a higher fre-
quency than once per second. The MH still waits for several beacons to be lost
before initiating a handoff, but the beacons are transmitted more quickly and the
handoff latency is reduced. The breakdown of a handoff is described in Figure 6(a).
The handoff proceeds exactly as in Figure 5(b) —  the beacon packets are simply
received more quickly.

• Packet Doublecasting (Figure 6(b)): The MH can place into forwarding mode a
subset of the BSs that are listening to the multicast group for the MH. This means
that multiple copies of the packet will be transmitted from multiple BSs to the MH.
In our scheme, two BSs are placed in forwarding mode simultaneously; the current
BS and a BS of the next higher overlay. Duplicate packets are filtered out at the
network layer at the MH by keeping a small cache of received IP packets and filter-
ing out received packets whose IP ids are already in the cache. Although not
strictly needed, this prevents unnecessary congestion control mechanisms from
being invoked at the transport layer. The network layer at the MH also keeps track
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of packets that have been received by each interface. When more than a threshold
number of consecutive packets are received on a new interface with none received
on the old interface, the MH decides that the old overlay is unreachable and ini-
tiates a handoff to the new interface. A breakdown of the handoff is shown in Fig-
ure 7. Two copies of each packet are sent to the MH, one from each BS. After 10
packets are missed from the old overlay, the mobile switches to the new overlay.
The packets kept in the network-level cache on the MH are forwarded to higher
layers. In cases where no data is currently being sent to the MH, beacons are used
to trigger a handoff. By utilizing diversity that arises from multiple network inter-
faces, this approach does at the network layer what the IS-95 CDMA Cellular
phone standard [Lee94] and the ARDIS wide-area data system [Ardis] do at the
physical layer. In IS-95, multiple BSs send duplicate copies of the same data using
the same CDMA codes. The MH’s receiver is already equipped to handle multiple
time-shifted copies of the same waveform, and a MH moves into the cell of the
new BS seamlessly. In ARDIS, multiple BSs transmit the same data at the physical
layer to achieve better in-building penetration.

• Header Doublecasting(Figure 6(c)): This approach takes advantage of the fact
that in the Packet Doublecasting approach, duplicate packets on the upper interface
are used only as an indicator of handoff. Therefore, full packets do not have to be
sent until the actual handoff occurs. In this approach the MH places a BS into a
mode where it continues to buffer packets destined for the mobile host. However,
the BS also forwards a packet containing the IP header of the buffered packet to the
MH. The network layer at the MH keeps track of which packets or packet headers
has been received by the mobile. The MH switches to the new BS when more than
a threshold number of headers have been received via new BS while no packets
have been received via the old BS. The new BS forwards the packets just as in the
Basic System. This approach has an advantage over Packet Doublecasting in that
less data is sent on the upper overlay.

Both doublecasting approaches have an advantage over the beaconing systems in that they use
extra resources only when the MH is actively receiving data. When the user is not receiving data,
no extra bandwidth is used. Additionally, beacons sent from the base station affect all mobile
devices in the wireless cell, and if beacons are sent at very high frequencies, media access affects
(such as exponential backoff during link activity) may dramatically reduce the effective bandwidth
of mobile hosts in the same cell. Another advantage of the packet doublecasting approaches is that
the packets that trigger a handoff are not redundant; they are consumed by actual applications. If
fast beaconing were used, then beacons (useless application-level data) would be competing with
application-level data for network resources at all times. 

A disadvantage of the doublecasting approaches is that both overlays must be able to support
the same network load. Packet doublecasting across a high-bandwidth and low-bandwidth network
will not work. Another advantage of the beaconing systems is that multiple users in a cell can use
the same beacon packets (rather than separate data packets) to make handoff decisions.

2.4 Differences between Vertical Handoff system and IETF Mobile IP

Although our system is based on Mobile IP, there are currently some differences between our
implementation and Mobile IP:

• Our beacon message formats and communications between the MH and BS do not
exactly match those used in Mobile IP. This is mainly due to the time when the
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Horizontal handoff system was implemented (in parallel to the formalization of the
Mobile IP specification).

• Our system assumes trust between MHs, FAs, and HAs. As a result, our implemen-
tation does not implement the MH-HA and MH-FA authenticators described in
[Per96].

• The care-of-address in our system is a multicast address, so there is no explicit
communication between the FA and the HA.

The above differences could easily be resolved by making our implementation conform to the
Mobile IP one (i.e. changing message formats, adding functionality, etc.). There are some differ-
ences, however, that cannot be resolved easily:

• Because of the optimizations we use for low-latency vertical handoffs, there are
extra communication types between MHs and FAs (i.e. forward packet headers,
beacon faster, etc.) which cannot be expressed only using Mobile IP messages.

• Although the policy that the MH uses for initiating handoffs is not explicitly spec-
ifcied in Mobile IP, our policy for Vertical Handoffs is significantly different than
the policy that most Horizontal Handoff systems use. We describe these differences
in more detail in [Ste97].

2.5 Overlay Networking Summary

Overlay networking allows a mobile device to detect new networks and to switch to the best
available network as the user moves around. Combined with the fast handoff optimizations, this
provides fast, transparent access to the best network.

Figure 7 summarizes the performance of the basic handoff system and each of the enhance-
ments for each of the upward vertical handoffs. We have learned the following things about the
enhancements proposed to reduce handoff latency:

• Fast beaconing results in a decrease in latency proportional to the bandwidth over-
head. This approach consumes bandwidth whether or not data is being sent to the
mobile device.

FIGURE 7.  Comparison of Handoff Latency for Basic
System and Enhancements
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• Packet doublecasting results in a loss-free zero latency handoff, but at a prohibitive
cost.

• Header doublecasting results in a latency similar to the packet doublecasting
scheme, but with a dramatic decrease in overhead.

• For handoffs between in-building and wide-area overlays, doublecasting
approaches have limited effect due to the latency-bound nature of the wide-area
network we used. 

For the network interfaces in our overlay network structure, header doublecasting performs the
best for transitions between in-room and in-building networks, and beaconing works best for transi-
tions between in-building and wide-area networks.

By providing seamless coverage to mobile clients as they roam in an Overlay Network structure
consisting of heterogeneous networks, the overlay networking subsystem meets the previously
described principles of Scalability, Transparent Access , and support for Heterogeneous Net-
works. By using optimizations to keep handoff latency low, we also meet the principles of Multi-
media support and high Performance .
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3 Reliable Data Transport Performance

A mobile networking environment presents several challenges to the problem of efficient reli-
able data transport. In this section, we discuss the challenges posed by the presence of different
types of wireless links, and then present our solutions to them. In this discussion, data transport
refers to the transfer of bytes end-to-end, i.e. from a source host to a destination host. The perfor-
mance of data transport can be quantified using several metrics such as throughput, goodput,
latency and fairness. Given the emphasis on end-to-end transfer of data (which is, after all, what
really matters to an end user), it is clear that any link (or subnetwork) in path from source to desti-
nation has the potential to influence performance. In practice, performance is determined primarily
by the weakest link in the chain. As we elaborate in the remainder of this section, a mobile subnet is
often such a weakest link in the chain.

The de-facto standard protocol for reliable data transport in the Internet is TCP[rfc1123,Ste94].
TCP provides a reliable byte-stream abstraction to the higher layers, delivering bytes in-order to the
application. It achieves reliability by using cumulative acknowledgements (acks), which are sent by
the recveiver to the sender for all received data on a regular basis. These acks are used by the
sender to determine the successful delivery or loss of data. In addition to this error control, TCP
uses these regular acknowledgements to pace out new data at a consistent rate, a procedure called
ack clocking [Jacobson88]. In the absence of any a priori knowledge of the state of the network,
TCP uses the rate at which acks arrive to deduce what rates can be sustained on that connection.
Therefore any irregularity in the acknowledgement stream gets manifested in the data stream in the
immediate future. To avoid overwhelming the network, TCP performs congestion control by gradu-
ally opening its transmission window through the slow start and linear growth phases, and cutting
back its window by half or more when data loss happens. An implicit assumption here is that data
loss is caused by congestion, a valid assumption in traditional wired networks.

Many of the assumptions that TCP makes break down in mobile subnets that have different
kinds of wireless links. First, wireless links tend to be error-prone, resulting in bit-errors. This is the
result of interfering noise due to other wireless transmissions and/or self-interference (fades) due to
reflections from physical objects in the environment. Wireless losses make TCP’s assumption, that
data loss is always due to congestion, invalid, and often result in degraded end-to-end performance.
Therefore, it is desirable to shield TCP from such losses, or make it aware of different types of net-
work losses, in order to obtain good performance in networks with wireless links. Also, since the
mobile subnet with its wireless links tends to be located at the periphery of the internetwork, it is
often desirable to employ a local solution that does not impact the rest of the network. These con-
siderations motivate our work on a transport-aware reliable link-layer protocol, called the snoop
protocol, described in Section 3.1. 

A second problem arises due to network asymmetry. Due to technological and economic con-
siderations, it is typically much easier to have a high bandwidth and more reliable link going from a
central base station to mobile nodes (the forward direction) than in the opposite (reverse) direction.
In terms of bandwidth, the extent of asymmetry can range from 1:10 ro 1:1000. Examples of such
networks include broadband satellite or LMDS-based forward channels coupled with a dialup
reverse channel, say using the cellular phone or packet radio network. Another form of asymmetry,
called latency asymmetry, arises due to the nature of the media-access protocols in several packet
radio networks, and results in large and variable delays. In both these cases, the process of transfer-
ring data in one direction is significantly influenced by the traffic in the opposite direction. The net
result of each of these forms of asymmetry in the context of TCP is that ack clocking gets dis-
rupted, thereby resulting in degraded performance. Our approach to mitigating this problem
encompasses both techniques that operate end-to-end and those that operate just locally in the wire-
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less subnet. As we discuss in Section 3.2, it is possible to use either approach to achieve similar
performance benefits.

The third problem that we address arises due to the characteristics of the media-access control
(MAC) protocol used in wireless networks, especially wireless LANs. The MAC protocol used in
such networks are derived from the corresponding protocols used in wired networks. However,
wireless networks are different from wired networks in certain important ways, which could signif-
icantly impact data transport performance. For example, it is difficult to do collision detection in
wireless networks. Also, the quality of connectivity could be significantly different for each
receiver at the same point in time. Our approach to addressing these problems is XXX Giao, please
complete

XXX incorporate this into previous paragraph Finally, in the context of improving network per-
formance, we also discuss the issues of link sharing in wireless local area networks. The goal of
link sharing is to provide a controlled bandwidth allocation for mobile hosts and their applications,
and thus improving the scalability of the network. TCP performance would benefit from such a
mechanism because of the stable link usage in the wireless hop provided by link sharing.

In summary, our approach to improving data transport performance in mobile, wireless net-
works has been identifying the specific characteristics of such networks (e.g., errors vs. congestion,
asymmetry, unfairness, etc.) that impact TCP performance and then incorporating end-to-end as
well as local mechanisms to either make TCP adapt better to these characteristics or to hide them
from TCP. By focusing on TCP, we are able to make our solutions applicable to the vast collection
of applications on the Internet that use TCP, and help in integrating wireless technologies into the
global Internet.

3.1 The Snoop Protocol

Over the past several years, TCP has been tuned to perform well in traditional networks made
up of links with very low bit-error rates. Networks with higher bit-error rates, such as those with
wireless links and mobile hosts, violate many of the assumptions made by TCP, causing degraded
end-to-end performance. In particular, packet losses are assumed by TCP to be due to congestion,
rather than because of errors or user mobility, and this causes the invocation of congestion control
mechanisms (e.g., slow start [Jac88]) that decrease the sender’s congestion window and reduce
throughput. 

The snoop protocol is a localized protocol that modifies the networking software only at the
base station and at the mobile host connected over the wireless link. In particular, no modifications

Wired network

Fixed Host

Base Station

Mobile Host

Figure 1. Network topology of the single-hop cellular wireless network based on the 
WaveLAN. The snoop agent runs at the base stations in the network.

Base Station

Home Agent

(Snoop) (Snoop)
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are required to TCP implementations elsewhere in the Internet. The protocol works by deploying an
agent called the snoop agent at the base station. The agent mainly performs the functions of loss
detection and loss recovery via local retransmissions. The network topology and snoop agent loca-
tion are shown in Figure XXX.

For transfer of data from a fixed host to a mobile host, we make modifications only at the base
station. These modifications include caching unacknowledged TCP segments and performing local
retransmissions based on a few policies that depend on TCP acknowledgments from the mobile
host and timeouts of locally-maintained timers. By using duplicate acknowledgments to quickly
identify packet loss, performing local retransmissions as soon as data loss is detected, and suppress-
ing these duplicate acknowledgments from the TCP sender, the snoop agent shields the sender from
the vagaries of the wireless link. In particular, transient situations of very low communication qual-
ity and temporary disconnectivity are completely hidden from the sender. 

For transfer of data from a mobile host to a fixed host, the snoop agent detects missing packets
at the base station by snooping on packets arriving from the mobile host and identifying holes in the
transmission. Then, when it sees duplicate acknowledgments arriving from the receiver that signi-
fies a loss of this packet, it sets a bit in its TCP header and forwards it to the mobile sender.  The
sender uses this Explicit Loss Notification (ELN) bit to identify that the loss was unrelated to con-
gestion, and retransmits the packet without taking any congestion-control actions. This requires
modifications to both the base station and mobile hosts. 

A key design goal in this work is the use of only soft state in the protocol. The state maintained
by the snoop protocol is soft, implying that its loss or corruption does not impact the correct func-
tioning of the protocol. We achieve this by taking advantage of the fact that TCP acknowledgments
are cumulative, which makes it easy to regenerate and periodically refresh any out-of-date state.
The snoop protocol should be viewed strictly as a performance improvement, which greatly
improves the performance of TCP over single-hop wireless networks. If the state associated with
the protocol is lost, it can be rebuilt rather easily upon the arrival of the next packet and acknowl-
edgment. 

The mechanisms described above together improve the performance of connections in both
directions, without sacrificing any of the end-to-end semantics of TCP or modifying host TCP code
in the fixed network. This combination of greatly-improved end-to-end performance, preservation
of end-to-end semantics, and purely local recovery techniques is the main contribution of this work.
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We have implemented a prototype version of the snoop protocol on a wireless testbed consisting
of IBM ThinkPad laptops and Pentium PC basestations communicating over a 2 Mbps AT&T
Wavelan. Our experiments show that it is significantly more robust at dealing with unreliable wire-
less links as compared to normal TCP; we have achieved speedups of between 2 and 20 compared
to regular TCP in our experiments with the protocol over a WaveLAN link across a range of simu-
lated bit-error rates, as shown in Figure XXX. We have also performed an extensive performance
evaluation of the snoop protocol by implementing several other schemes (including other flavors of
link-layer protocols, end-to-end protocols and split-connection protocols) and comparing their rela-
tive performance [BPSK96]. Our results demonstrate the significant benefits and advantages of
such transport-aware link layer schemes, in addition to demonstrating the effectiveness of ELN and
selective acknowledgments in handling non-congestion-related packet losses. 

We have also integrated the multicast-based low-latency handoff scheme described in Section 2
with the snoop protocol for improved TCP performance in the presence of both wireless bit-errors
and user mobility between cells.  The idea is to take advantage of the multicast and intelligent buff-
ering at the base stations (used to achieve low handoff latencies) in order to perform the mirroring
of the snoop agent’s soft state as well. Further details 

3.2 Asymmetric Networks

As mentioned in the previous section, TCP relies on the ack clocking mechanism to inject new
data into the network at an even pace. In effect, TCP depends on the smooth flow of packets (acks)
in the opposite direction in order to sustain good data transport performance in a certain direction.
While this dependence in fact leads to robust congestion control in most wired networking scenar-
ios, it can result in degraded performance in networks that exhibit asymmetry, such as many wire-
less networks.

Given our focus on TCP, we have the following characterization of network asymmetry: a net-
work is said to exhibit asymmetric characteristics with respect to TCP, if the data transport perfor-
mance in one direction is affected significantly by the traffic and network charcteristics in the

Figure 2. Throughput received by the mobile host at different bit-error rates (log2 
scale). The vertical error bars show the standard deviations of the receiver throughput. 
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opposite direction. Note that the traffic in the opposite (reverse) direction could just be the TCP
acks for data in the forward direction. 

This general definition leads to several types of asymmetry that we can classify:

• Bandwidth: The bandwidth in the forward direction (towards the end user) is much 
larger (10 to 1000 times larger) than that in the reverse direction (away from the 
user). Networks based on Direct Broadcast Satellite (DBS) systems or wireless 
cable modem technology exhibit such asymmetry.

• Latency: In certain wireless networks, such as Cellular Digital Packet Data 
(CDPD), the underlying media access control (MAC) protocol often results in a 
significantly larger one-way latency from a base station to a mobile station than in 
the reverse direction. In other networks, such as the Metricom Ricochet multi-hop 
wireless network, there is a significant delay when a node switches from sending to 
receiving mode or vice versa, a phenomenon that is exacerbated in the poresence of 
bi-directional traffic (e.g., caused by TCP acks). This often results in significant 
variations in round-trip times and makes it hard for TCP to adapt to the characteris-
tics of the network. 

• Bit-error rates: The incidence of packet errors could be much greater in the 
upstream direction than in the downstream direction. This could be inherent in the 
network technology (e.g., a 2-way cable modem system) or the result of distinct 
upstream and downstream technologies (e.g., a DBS downlink with a packet radio 
uplink).

We observe that the reason for the development and deployment of asymmetric network access
technologies is in part due to technological and economic considerations that make it easier to pro-
vide a fast and reliable channel out from a central base station than in the opposite direction, and in
part because of the asymmetric communications requirements of today’s popular applications such
as Web access. 

We identify three specific problems that network asymmetry results in as far as TCP perfor-
mance is concerned. We discuss both end-to-end techniques (i.e., enhancements to TCP) and local
techniques to alleviating these problems, which are generally applicable across a variety of net-
works that exhibit asymmetric characteristics. 

First, the ack stream corresponding to a data transfer could either lead to congestion over the
bandwidth-contrained reverse channel thereby disrupting the flow of data packets indirectly (due to
the breakdown of ack clocking) or interfere directly with the flow of data packets (as in a packet
radio network). Our basic solution to this problem is to decrease the frequency of acks transmitted
by the TCP receiver. Our end-to-end scheme, called ack congestion control, allows the receiver to
adaptively reduce the frequency of acks, while ensuring that the sender is not starved of acks. This
requires the TCP sender to tell the receiver how large its window is. Our local scheme, called ack
filtering, operates at the router to the constrained reverse channel. It exploits the cumulative nature
of TCP acks to filter out redundant acks from the queue when a new ack for the same connection
arrives at the input to the queue.

However, the decreased frequency of acks leads to problems at the TCP sender. Since each new
ack could cause the sender’s window to slide forward by several segments, the sender could emit a
burst of several packets back-to-back, and induce congestion in routers downstream. In addition,
since the TCP sender increments its congestion window based on the number of acks and not on
how many bytes are acknowledged with each ack, window growth could now be much slower. Our
end-to-end mechanism for combating these problems, called sender adaptation, breaks up a poten-
tially large burst into several smaller bursts and spaces apart these smaller bursts according to the
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effective data transfer rate of the connection. Our local solution, called ack reconstruction, hides
the infrequent ack stream from the TCP sender by deploying an agent at the other end of the con-
strained reverse channel. Once the acks have traversed the constrained network, the ack reconstruc-
tor attempts to reconstruct the original smooth ack stream by inserting new acks to fill in gaps and
by spacing apart acks that have been bunched-up. The end result is that an unmodified TCP sender
can continue to rely on standard ack clocking to sustain the data transfer at a consistent rate. 

The final problem arises specifically in an asymmetric-bandwidth situation where the acks of
the forward-direction data transfer have to share the constrained reverse channel with a reverse-
direction data transfer (simultaneous bi-directional data transfers). With FIFO queuing, the large
data packets of the reverse transfer could block the transmission of acks for long periods of time,
thereby starving the sender of the forward transfer. Our local solution to this problem, called acks-
first scheduling, involves giving acks a strictly higher priority than data packets. The rationale is
that the small acks packets when sent infrequently would have little impact on the performance of
the reverse data transfer, but their timely transmission is critical to sustaining good performance for
the forward data transfer. Since the resolution of this problem requires control over the scheduling
of data and acks at the reverse bottleneck link, we do not have an end-to-end version of the solu-
tion.

We have done a detailed evaluation of these solution techniques both in a the ns simulator envi-
ronment as well as in our network testbed. These results are discussed in detail in [BPK97] and
[BPK98]. We present here sample results for both the asymmetric-bandwidth and asymmetric-
latency configurations. Figure 8 shows the performance of various schemes when there is two-way
traffic in a network with a high-degree of bandwidth asymmetry. These were measurements done
using a real implementation of the schemes in our testbed. We make two important observations.
First, acks-first scheduling helps the forward-direction transfer significantly by avoiding the long
waits that its acks would have had to encounter at the reverse bottleneck had FIFO scheduling been
used. Second, ack congestion control (ACC) helps ensure that the acks of the forward transfer do
not result in starvation of data packets of the reverse transfers. It ensures this by decreasing the fre-
quency of acks.
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Figure 8 shows the performance of various schemes obtained via a simulation of the Ricochet
packet radio network. The important observation is that ack filtering (AF) and to a lesser extent ack
congestion control (ACC) result in improved performance. The reason is that the decrease fre-
quency of acks in these cases decreases MAC contention and hence latency variability.

3.3 Link Sharing for Wireless LANs

In this section, we present the designs of a link sharing mechanism in a wireless LAN environ-
ment to improve the scalability of such a network. Wireless LANs (WLAN) are placed in the bot-
tom layer of the wireless overlay network. They generally provide shared access to a single channel
(hundreds of Kbps to a few Mbps) using CSMA based protocols. Examples include the Proxim
RangeLAN and AT&T WaveLAN[DN95]. The bandwidth provided by a WLAN, while better than
most other wireless network technologies, is still limited. An effective link sharing mechanism to
provide stable network performance to applications and mobile hosts is important and necessary for
a wireless network to accommodate more users and demanding applications. Furthermore, it is also
desirable for administrative reasons to be able to control the link resource allocation. For example,
while providing access to roaming mobile hosts, the owner of a WLAN may want to ensure that the
local users are given larger slices of the bandwidth.

Essentially, there are two most important goals for an effective WLAN link sharing mechanism.

1. Bandwidth Sharing: A link sharing mechanism’s primary responsibility is to allo-
cate bandwidth among mobile hosts and to enforce the allocation.

2. Surplus Bandwidth Distribution: If a mobile host is not using its allocated band-
width, the surplus bandwidth should be shared by other mobiles hosts in a con-
trolled fashion.

The general issues of link sharing are well discussed in the modeling of Class Based Queueing
(CBQ) in [FJ95]. CBQ provides effective hierarchical link-sharing on a point-to-point link, and it
has being implemented in the Trans-Atlantic FAT pipes, among others. However, the multi-access
nature of WLANs requires a distributed link sharing mechanism, which is the subject of the follow-
ing discussions. The goal of this study is, quite simply, to extend CBQ to the WLANs.

We base our discussions on WaveLAN, which is a 2 Mbps WLAN. We also assume that all
mobile hosts and the base station follows the link sharing protocol. Furthermore, there is no direct
communication among mobile hosts in a WaveLAN.

3.4 Bandwidth Sharing

In this subsection we describe the partitioning of the bandwidth among mobile hosts and the
enforcement of such bandwidth sharing guidelines.

Figure 9 shows a hierarchical link sharing structure used for partitioning the bandwidth among
agencies and further among sub-classes of each agency in [SJ95]. We use a similar link sharing
structure, as shown in Figure 10, except the concept of an agency is substituted by a node. A node
is either a mobile host or a basestation in a WaveLAN. Because both up-stream and down-stream
traffics share the single channel, it is necessary to cover both traffic directions in partitioning band-
width.

The enforcement of such a hierarchical bandwidth allocation guideline is performed at two lev-
els. Firstly, a node need to ensure that its internal link sharing guideline is followed. Since this
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requirement is no different from the CBQ goal, the same scheduling algorithms discussed for CBQ
can be used.

Secondly, each node needs to get its allocated bandwidth. This is done with a very simple
method. The basic idea is that if bandwidth is not over-allocated among nodes, and that each node
restrains itself at the link level from using more than its allocated bandwidth, everyone would
receive their promised bandwidth share. There is no explicit coordination among nodes for the link
usage, and no state exchange is necessary besides the initial network cell admission and subsequent
bandwidth allocation process.

Figure 11 shows a simulation result. In this simulation, there are 9 nodes using a WaveLAN
link. One node is sending a CBR stream at 10% of the total link bandwidth, and the packet size is
190 byte. All other 8 nodes send random sized packet ranging from 200 byte to 1000 byte. 3 of
these 8 nodes are allocated 20% of the total link bandwidth each, and the rest 2% each. All these 8
nodes have sufficient demand if the bandwidth is available. The line at the top is the total link
usage. The x-axis shows time in seconds. The y-axis shows the average bandwidth used by each

FIGURE 9.  Link Sharing Structure for CBQ FIGURE 10.  Link Sharing Structure for WLAN
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node over 1 second intervals, as a percentage of the WaveLAN link bandwidth.

As shown in the figure, the enforcement of the bandwidth sharing works very well. Each node
receives about its allocated bandwidth, and the total link usage is close to 80%. 

3.4.1 Surplus Bandwidth Distribution

The issue of surplus bandwidth distribution in WaveLAN is one of state exchange. For example,
when a node is not using its share of the bandwidth, some other nodes need to get this information
to take advantage of the surplus link resource. Firstly, we need to define the concept of surplus
bandwidth. In a wireless link, the number of packets injected into the link is often different from the
number of packets coming out of it, due to the wireless errors. For the accounting purpose in this
link sharing mechanism, the bandwidth used in terms of injected packets is used to measure the link
usage. Surplus bandwidth, therefore, is the difference between the attempted bandwidth usage and
the bandwidth allocation of a sub-class or a node. In this subsection, we describe the approach to
state exchange for each of the three types of surplus bandwidth distribution: within a node, between
the up-stream and down-stream of a mobile host, and among the nodes.

State exchange within a node is straight forward. When one particular sub-allocation for a node
is not being used, other sub-allocation connections can take advantage of it, given sufficient
demand. The algorithms discussed in [FJ95] for CBQ can be directly applied.

State exchange between the up-stream and down-stream of a mobile host is a special case due to
the shared channel property of WaveLAN. The exchange of information can be largely implicit.
Because the two nodes involved, the base station and a mobile host, are both senders and receivers
for each other. In general, each can monitor the other’s link usage to be able to understand the
other’s states and therefore surplus bandwidth. To account for packet losses due to error, some reg-

FIGURE 11.  Bandwidth Sharing in WaveLAN
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ular updates should be used to adjust the state exchange between the two. These updates can be
simple and piggybacked on regular data packets to reduce overhead.

State exchange among nodes, however, need to be explicitly conducted. When a mobile host is
not using its combined allocation for up-stream and down-stream link bandwidth, the surplus link
resource should be distributed among other nodes according to certain policy. In this case, the base
station is at the position of collecting up-to-date link usage information, which is already collected
for the purposed stated in the previous paragraph. It is up to the base station to inform other nodes
to adjust their link usage. The central role of the base station is due to two reasons:

1. Administratively, the base station is naturally the one to enforce the WLAN usage
policy. 

2. Because most of the traffic in a WLAN is expected to be heavily biased towards the
downstream traffic, it is really most likely an internal state exchange at the base sta-
tion for it to distribute the surplus bandwidth among the other down-stream traffics
of other mobile hosts. This also means that the explicit state exchange from base
station to other mobile hosts is not necessarily frequent or expensive.

3.5 Summary

Taken together, our extensions provide a faster and much more robust version of TCP. These
modifications are critical for wireless networks, but are more widely applicable. Thus these exten-
tions enable improved performance in heterogeneous networks comprising both wireless and wire-
line components.
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4 The Scalable Proxy and Coordination Bus

The proxy’s main tasks are to shield clients from the effects of slow networks and to tailor Inter-
net content to the needs of each different client, allowing meaningful content presentation across all
clients. As described in detail elsewhere [FGBA96], we have found that datatype-specific lossy
compression, which we call distillation, is an effective adaptation mechanism. Distillation provides
well-defined operations over semantically typed data. For example, distillation of an image consists
of selectively discarding color information, high-frequency components, or pixel resolution. Distil-
lation of video can additionally include frame-rate reduction. Less obviously, distillation of format-
ted text requires discarding some formatting information but preserving the actual prose. In all
cases, the goal is to preserve information that has the highest semantic value, if necessary changing
its format to enable optimal presentation on the target device.

The user can always explicitly ask for a higher-quality representation of degraded content later,
if she decides that the data is valuable enough to be worth the additional latency; for instance,
zooming in on a graphic or video frame, or rendering a particular page containing PostScript text
and figures without having to render the preceding pages. We define refinement as the process of
fetching some part (possibly all) of a source object at increased quality, possibly the original repre-
sentation. As with distillation, the refinement technique is a function of the semantic type, and the
implementation of the technique requires intimate knowledge of the encoding. For example,
“zooming in” is a useful operation for all images regardless of encoding, but encoding-specific
tools are necessary to extract and magnify the desired subregion.

Providing distillation and refinement at the proxy confers several architectural advantages.
First, it allows a wide range of mobile clients using networks with widely varying characteristics to
interoperate transparently with legacy servers, since all adaptation is performed at the proxy, which
looks like a powerful, well-connected client from the server’s point of view. Even if we could mod-
ify servers, however, performing adaptation at the proxy confers an important separation of con-
cerns: the servers focus on content provision, while the proxy focuses on individualized content
presentation. This separation has the technical benefits of improved maintainability and amortiza-
tion of proxy resources, and the economic benefit of orthogonalizing content provision and quality
of service provision, which decouples both administration and billing (distillation and refinement
represent a value-added service to users with slow network connections or impoverished clients).

In the following subsections, we describe the internal architectural organization of a scalable
proxy designed to provide individually-customizable service to each of thousands of users, based
on each user’s personal preferences, client characteristics, and network characteristics. The net-
work characteristics can be explicitly supplied (if a “stock” network stack is used) or deduced by
the Sessions layer described in XXXX (if the Dædalus network stack is used). Although the proxy
functionality is central to our overall architecture, the narrow interfaces used by the proxy (in this
case, the HTTP proxy interface) enables it to operate as a standalone component without the rest of
the architecture as well, and in fact we have already deployed Web proxy service to the dialup user
communities at UC Berkeley and UC Davis using this platform.

4.1 The Coordination Bus

The coordination bus [FJM+95] provides a virtual bus with discrete, symbolically named chan-
nels, layered on top of a multicast network. A coordination-bus-aware program can broadcast infor-
mation on one or more CB channels as well as hear the broadcasts of other CB-aware programs by
listening on the appropriate channel(s). CB channels can be used for communication between dif-
ferent systems or between components of a single distributed system. Our scalable proxy is an
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example of a non-trivial distributed system that uses the CB in both of these ways: various compo-
nents of the system use the CB to exchange information used to achieve fault tolerance and auto-
matic load balancing. In addition, the “front end” (the part of the system visible to the outside
world) can be controlled by sending messages on the CB.

The scalable proxy defines the following channels:

GM_PTMBEACON: As described in Section 4.2.3, the PTM sends out periodic beacons so that
workers and the front end can find it. If the front end detects that the beacons have gone away, it
assumes the PTM has died, and attempts to launch a new one.

GM_NETSTATE: The front end can be advised of automatically-detected network changes via
this channel. A network state notification specifies which user(s) the change applies to and the new
values of the changed network characteristic(s), such as bandwidth and latency.

4.2 The Proxy Architecture

In this section we give a high-level description of the internal architecture of the scalable proxy
for distillation and refinement. A detailed description, including performance information and
fault-injection experiments, may be found in [FGC+97]. The proxy is designed to run on a well-
connected network of commodity workstations (NOW). Although the core software is considerably
more general, we focus our attention here on the particular mechanisms that allow the scalable
proxy to work as an HTTP proxy [Luo94] for the World Wide Web. The design goals of the proxy
are as follows:

• High performance: the latency of serving an individual user should be minimized.
Ideally, the overhead of using the proxy should be barely noticeable even when a
high-speed connection is used. This supports Principle 8 (Performance) from the
Introduction.

• Scalability: as the number of users increases, the per-user performance can be held
approximately constant by adding nodes to the NOW. This supports our goal of
serving thousands and eventually millions of users (Principle 2 from the Introduc-
tion).

• High availability: the ability to transparently mask the transient failure of any
individual component, so that the service as a whole is continuously available.
Meeting this design goal is a requirement of Principle 3 (High Availability) from
the Introduction.

• Mass customization: A persistent preference profile is maintained for each user of
the proxy. The profile is automatically used to tailor the proxy’s behavior on every
request from that user.

We now describe the components of the proxy, which are shown in Figure 12. Note that all
components except the Proxy-Transcoder Manager and User Preferences Database are replicated
for scalability, availability, or both.

4.2.1 The Proxy Front End

All interaction between clients and the proxy occurs through the front end, the only component
visible to the “outside world”. It is the attachment point to which clients connect for proxy service.
Our HTTP proxy implementation is compatible with the W3C protocol standard for HTTP 1.0
proxies. The front end matches incoming requests with the appropriate client preferences profile
(currently based on the IP address of the request) and handles preference changes for clients. The
front end does not actually do any of the work of servicing the client requests; therefore, it can be
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simple and fast, maximizing the number of clients that can be served and minimizing the “turn-
around time” before a client request is handled

4.2.2 Workers

The workers are code modules that perform the compute-intensive work of distillation and
refinement, caching, and if necessary managing the user interface to the proxy (we discuss UI
issues separately below). Our system places minimal requirements of worker structure, making it
easy to use off-the-shelf code. A given NOW node may host one or several workers. The workers
are “dumb” in that they specialize only in content transformation; the other aspects of distillation—
load balancing across multiple instances of a worker, and determining the correct user preferences
for a particular distillation operation— occur in other parts of the system, and workers don’t need to
know about them.

In addition to content transformation, workers can also modify the output datatype of the con-
tent. For example, if a client cannot display JPEG images, a JPEG worker could produce output in
a different format that the client can understand, perhaps even a proprietary optimized image for-
mat. If the client can only display images that respect certain constraints (number of colors, fixed
color palette, maximum area, etc.), the worker can attempt to transform the content such that the
constraints are met. This tremendous flexibility gives the proxy the ability to serve a wide variety
of heterogeneous clients (as we require in Principle 9 from the Introduction), and since each user’s
preferences are tracked separately, the specific transformations performed will be user-specific
(mass customization). We describe separately a specific example application, Top Gun Wingman,
that leverages this capability 

Besides distillation, a worker is expected to be able to report two quantities, both of which are
used by the Proxy Transcoder Manager (described below) for load balancing:

• Its current workload (e.g., what fraction of the time it has been busy since the last
report); this information is broadcast using the CB.

• The estimated completion time of a given distillation operation, given the inputs.

FIGURE 12.  Block diagram of
scalable proxy internal
architecture. Most nodes are
connected via both a high-speed
SAN (system-area network, such
as Myrinet) connection, and a
lower-speed “utility network”
(such as 10baseT Ethernet) which
also includes connections to the
outside world. Components
include front ends (FE), a pool of
workers (W) some of which may
be caches ($), a user profile
database, a graphical monitor, and
a fault-tolerant load manager,
whose functionality logically
extends into the manager stubs
(MS) and worker stubs (WS).

System Area

Wide-Area Network

Manager

Graphical
Monitor

User
Profile DB

 Network

$

$

$

Worker Pool

FE FEFE
MS MS MS

W

WS WS WS

W W Worker
API



The Scalable Proxy and Coordination Bus DRAFT

36

4.2.3 Proxy Transcoder Manager (PTM)

The PTM manages the location of workers, distribution of load across multiple workers, spawn-
ing of new workers on demand, and providing the assurance of fault tolerance. In addition, the PTM
can spawn workers of a given type when there is sufficiently increased load and when a NOW node
is available to host it, or when an existing worker dies because of a program fault.

The functionality of the PTM is split across a centralized manager process and stubs in the fron-
tend and workers (the manager stub and worker stub, respectively). The PTM periodically beacons
its existence on a coordination bus channel to which the other components subscribe. The use of the
coordination bus provides a level of indirection and relieves components of having to explicitly
locate each other. When the front end has a task for a worker, the manager stub code in the frontend
contacts the PTM, which locates an appropriate worker, spawning one if necessary. The manager
stub caches the new worker’s location for future requests.

The worker stub attached to each worker accepts and queues requests on behalf of the worker
and periodically reports load information to the manager. The PTM aggregates load information
from all workers, computes weighted moving averages, and piggybacks the resulting information
on ites beacons to the manager stub (at the frontend). The manager stub caches the information in
these beacons and uses lottery scheduling [WW94] to select a worker for each request. If no worker
exists to handle the load, the PTM knows how to launch a new one. The PTM can also detect the
“death” of a worker and replace it with a new copy.

To allow the system to scale as the load increases, the PTM can automatically spawn new work-
ers on unused nodes. Another mechanism used for adjusting to bursts in load is overflow: if all the
nodes in the system are used up, the PTM can resort to starting up temporary workers on a set of
overflow nodes. Once the burst subsides, the workers may be reaped.

The PTM represents a centralized approach to load balancing policy: all load balancing deci-
sions are made in the PTM based on information periodically collected from the workers (workers).
An alternative design would be fully distributed load balancing, in which workers maintain local
load statistics (and possibly exchange statistics with their peers) and the scheduling decision is
made solely on the basis of this local information, rather than in a central “clearinghouse”. The
standard argument in support of this design is that the loss of an individual worker may lead to
degraded scheduling but not loss of functionality, whereas in our scheme the death of the PTM
results in the loss of ability to make scheduling decisions at all. We counter that for our architec-
ture, the centralized approach is superior, provided the PTM can be made fault-tolerant, for the fol-
lowing reasons:

• Centralized load balancing algorithms are easier to design, easier to understand,
easier to debug, and tend to exhibit behavior that is easier to characterize.

• Centralized load balancing allows a flexibility of policy that is much more difficult
to achieve with distributed scheduling. For example, during peak usage hours, we
can stratify users into “service classes”, giving users in the higher service classes
faster service (e.g., by directing their requests to a set of “reserved” workers whose
wait queues are kept shorter than average). Implementing such policy changes in a
distributed scheduler is difficult and requires changing every component that con-
tains scheduling logic (i.e. every worker). In our system, we can even transparently
start a new PTM with a different policy and then kill the old one, without interrupt-
ing system operation.

The key to making the PTM fault-tolerant is the use of a process-peer fault tolerance design:
when a component fails, one of its peers restarts it (on a different node, if required), while cached
stale state carries the surviving components through the failure. After the component is restarted, it
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gradually rebuilds its soft state. In our system, the PTM and front end act as peers for fault toler-
ance. If the PTM dies, the front end will detect this (through the loss of beacons from the PTM) and
restart the PTM. All workers that were originally communicating with the failed PTM will detect
the new PTM and register withit, thereby re-establishing communication and rebuilding the PTM’s
state. Thus the only way to bring the system down is to simultaneously kill the front-end and the
PTM. Since these can be made to run on different physical machines, simultaneous death of both is
unlikely. Process-peer fault tolerance is one of the techniques used to achieve the High Availability
goal of Principle 3 from the Introduction.

4.2.4 Caching

The proxy architecture includes Harvest cache workers [BDH+94] partitioned across several
nodes. Harvest suffers from three functional/performance deficiencies, two of which we resolved.

First, although a collection of Harvest caches can be treated as “siblings”, by default all siblings
are queried on each request, so that the cache service time would increase as the load increases even
if more cache nodes were added. Therefore, for both scalability and improved fault tolerance, the
manager stub can manage a number of separate cache nodes as a single virtual cache, hashing the
key space across the separate caches and automatically re-hashing when cache nodes are added or
removed. Second, we modified Harvest to allow data to be injected into it, allowing distillers (via
the worker stub) to store post-transformed or intermediate-state data into the large virtual cache.
Finally, because the interface to each cache node is HTTP, a separate TCP connection is required
for each cache request. We did not repair this deficiency due to the complexity of the Harvest code,
at the cost of a slight performance degradation.

Caching is only an optimization. All cached data can be thrown away at the cost of perfor-
mance— cache nodes are workers whose only job is the management of soft state. In [GB97], we
present a detailed analysis of the performance improvements that a typical cache installation can
provide.

4.2.5 Video Gateway

The RTP video gateway (vgw in Figure 12) can also be controlled via the CB, and we have
developed a Netscape plug-in for this purpose. In conjunction with Netscape plug-ins for the
MBone video conferencing tool, vic, the RTP gateway allows real-time adaptation of video
streams. The increasing use of network video and audio was the motivation for Principle 7 (Multi-
media Support) from the Introduction, and the RTP video gateway clearly contributes to this goal.

In the original design of the video gateway [AMZ95], much care was taken to separate the user-
interface from the computational engine that communicates over the CB. This clear separation
between mechanism (engine) and policy (UI) made it very easy to implement a remotely controlled
gateway since at the API level, there is no distinction between a local or remote client on the CB.
Additional work is now being done to develop the adaptation policy that will enable dynamic adap-
tation to varying bandwidths over the bottleneck link.

4.2.6 Control Panel

We have implemented a generic Tcl/Tk-based control panel and GUI for monitoring and con-
trolling the entire system. In particular, the various quantities of interest (load, requests per second,
etc.) reported by any of the system components can be displayed by the control panel, and individ-
ual components can be killed. The control panel works by listening and broadcasting on the CB
channels our system uses, as described in Section 4.1. 

The goal of the control panel is to make it relatively easy for a system manager to administer the
scalable proxy, which in turn will make the scalable proxy more likely to be widely deployed once
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it has made its research debut. The control panel can be used to graphically monitor the state of the
system and interactively control it, and will support operations such as notifying the system man-
ager via e-mail or beeper when a catastrophic failure is detected. Since the control panel is script-
able and extensible, we expect it to be reused by other similar projects in the future.

4.2.7 Dynamic Adaptation

An entity not shown in Figure 12 is the network monitoring agent. The proxy is already
designed to handle each distillation request with separate parameters (each user can maintain a per-
sonal preferences profile); this same mechanism can be exploited to provide dynamic adaptation to
changing network conditions. The proxy will listen on the Coordination Bus for notifications about
network state changes (for example, a drastic change in available bandwidth caused by a vertical
handoff). It can then change the distillation profiles for the affected user(s) so that the end-to-end
latency is kept roughly constant despite the network change. For example, if a loss of bandwidth is
detected, then more aggressive distillation is necessary in order to achieve the same end-to-end
latency; if an increase in available bandwidth is detected, we can deliver higher quality content to
the user without increasing the latency. This kind of dynamic adaptation illustrates how proxies can
play an important role in providing the adaptive behavior we eventually want from all applications,
as set forth in Principle 10 in the Introduction.

4.3 Application, Transport, and User Interface Issues

Although the initial implementation of the scalable proxy was designed as an HTTP proxy, the
core is general enough to support non-WWW applications. In particular, we have developed a
graphical Web browser for the PalmPilot handheld organizer. Our browser, Top Gun Wingman,
heavily exploits the proxy architecture; in fact, the browser will not work at all without the proxy,
since it relies on the proxy for complete data reformatting into a simple markup format the client
can understand. We were forced to build our own client application for the PalmPilot since we
could not locate any existing client to leverage, but in doing so we gained some valuable experi-
ence, some highlights of which we now discuss.

We have found that such applications are much easier to develop if they can avail themselves of
a higher-level application protocol than HTTP. The reason is that in addition to non-trivial perfor-
mance overhead, HTTP exposes the wrong abstractions to applications and lacks some high-level
abstractions that we find useful for adaptive applications of the kind described in this document.
For example, HTTP exposes host names and IP addresses (thus requiring TCP/IP semantics), is
verbose and space-inefficient, and requires a reliable stream abstraction (TCP) even though its
behavior is closer to datagrams than streams (most requests are short and may even fit in a single IP
packet, and data from simultaneously outstanding requests may be delivered in an order different
from that in which the requests were initiated). Because the protocol is stateless, each HTTP
request is accompanied by myriad headers containing authentication information, compression
information, and minutiae that must be parsed and consume network bandwidth, even though most
applications don’t care about them. On the other hand, HTTP provides no abstractions to support
refinement (there is a notion of “quality negotiation” which could be used to crudely support distil-
lation, but it is not well-specified, does not allow fine control over distillation parameters, and is
not supported in any current implementation of the protocol), no way to keep session state (cookies
only provide session state to individual servers), and no general mechanism for identifying the
user’s client device capabilities or tracking and reacting to network state changes.

To address some of these limitations, we have devised a simple application-level protocol by
which applications can communicate with the proxy. The GloMop application-frame transport pro-
tocol requires a single reliable stream connection using any protocol (such as an error-correcting
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serial modem). It provides an abstraction of an asynchronous delivery channel of application level
frames [***CITE ALF PAPER***], possibly unordered but self-describing. The protocol stack
delivers one ready-to-render ADU at a time; thus the client logic is extremely simple--wait for an
ADU to arrive, render it, go back to waiting. A simple user interface handles navigation clicks to go
to other pages, by sending an ADU encapsulating the new request. Receiving a duplicate ADU is
idempotent, and receiving an ADU that was never requested is correct, giving us the ability to sup-
port “true push” multicast applications such as the MediaBoard for free. (Although the network
stack on the PalmPilot does not support IP multicast, the proxy does support it and can act as a uni-
cast tunnel.) 

An obvious drawback of this approach is that client applications must be rewritten (although in
the case of Java, a Java client applet could be embedded in a Java-capable browser and exploit
existing browser support). In general we have found that if a device already supports the underlying
semantics required by HTTP with reasonable performance, as is the case for laptop PC’s, then we
should continue to leverage the legacy HTTP clients; but otherwise, for example with current-gen-
eration PDA’s, it is far simpler to implement the bare-bones support required by the GloMop
bytestream protocol than it is to bootstrap an entire HTTP implementation onto the device. We
believe that the widespread availability of a high-level API such as GloMop will ease and encour-
age application development for a wide variety of clients, supporting Principle 9 (Heterogeneous
Clients) from the Introduction.

In addition to bringing the “high availability” requirement into sharp relief, heavy dependence
on a proxy that performs distillation and refinement presupposes the existence of a user interface to
control these features. For example, in Top Gun Wingman, tapping on an inline image with the sty-
lus brings up a pop-up menu from which the user can choose to refine the image to full screen size,
refine it to its original size (which may be larger than the device’s screen and require horizontal and
vertical scrolling to view), or follow the hyperlink that the image points to (if the image is a hyper-
link). However, comparable functionality is needed for the HTTP proxy for “stock” browsers,
where it is not trivial to modify the browser’s UI. For example, browsers already define a behavior
for left-clicking on an image, and overriding this behavior in an elegant way is difficult. Recently,
client-side extension technologies such as Java and JavaScript have made this task somewhat eas-
ier; we have experimented with both mechanisms for improving the UI to our HTTP proxy
[FGC+97].

The following table summarizes the most important differences (from the application devel-
oper’s standpoint) of exploiting a custom protocol and custom client features as opposed to “stock”
clients and HTTP.

Feature Standard Client Client with GloMop ASL
Distillation UI Substitute distilled image for originals,

or modify URL’s of images. Both cause
cache pollution unless pragmas are used
(and observed by client).

No cache pollution since protocol and client
have built-in notion of representation vs.
document.

Refinement:
fetch original

Use Java, JavaScript, or plug-in
architecture to provide user interface
controls for refinement

Exploit native GUI support, e.g. pen gesture
on distilled object opens original (in a new
window if desired).

Refinement:
zoom in/out

Use native GUI objects to allow user to
“drag out” region to be refined.
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4.4 Summary

The scalable proxy is the key to providing Dynamic Adaptation (Principle 10), which enables
support for a broad range of Heterogeneous Networks (Principle 1) and for reacting to drastic
changes in network performance, such as occur during vertical handoffs. The proxy’s internal
architecture is designed to fulfill the following additional goals:

• Scalability and High Availability: each instantiation of the proxy will support
thousands of users by leveraging NOW technology, and will use fault-tolerance
techniques such as redundancy and process pairs to mask transient failures in indi-
vidual system components.

• Multimedia and high Performance: the ability to do datatype-specific compres-
sion (distillation) and refinement enables low-bandwidth users to access multime-
dia content in ways that were previously impossible, and optimizes for low latency
content delivery.

• Heterogeneous Clients: since distillation can create output for an arbitrary client
device, and we can track each user’s preferences individually, the proxy resources
can be amortized across a diverse user population with widely varying clients.

Page
segmenting

Proxy creates new pages on the fly from
a single large page, using “magic”
URL’s which are specially recognized
when passed back to the proxy. Causes
cache pollution in client and raises
cache management issues at proxy.

Pages are naturally split up into chunks as a
foundation of the protocol. It is not
necessary to “fool” the client. A table of
contents for the pages is automatically
generated, also as part of the API.

User
preference
tracking

User prefs must be mapped from IP
address (user re-registers for each new
session to re-establish username-to-IP
mapping), or else transported in cookies
or URL’s.

Initial connection to proxy includes
registration handshake, authentication (if
desired), notification of which datatypes
client can handle, and prefs profile lookup.

Security SSL; requires changes to server and
server registration with a CA; proxy is
only allowed to act as a tunnel for SSL

Separate authentication step can use Charon
[FG96] lightweight Kerberos-based
protocol; only the user and proxy need to
share a secret. (Proxy-to-server link would
still require SSL.) This will work with all
other apps, not just WWW.

Protocol
latency
reduction

HTTP keep-alive doesn’t work for
proxies. TCP setup/teardown is very
expensive and adds 1.5 roundtrips of
latency per connection. (This overhead
is only partially mitigated by the
Sessions Layer described in XXXX; it
cannot be entirely eliminated.)

Very low overhead (a single stream
connection) and high efficiency to the
server, including compression that is
invisible to the client app.
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5 Network Services

The Network Services component of the architecture builds atop our innovations in network-
layer routing and transport and our use of application-specific proxy-servers. It provides support for
locale-specific discovery of available resources (such as proxies) and “on-the-move” reconfigura-
tion of and adaptation to these resources. This functionality is required to support seamless interac-
tion with the environment as clients roam in autonomous (separately-administered) overlayed
networks.

Users wish to invoke services -- such as controlling the lights, printing locally, gaining access to
application-specific proxies, or reconfiguring the location of DNS servers -- from their mobile
devices. But it is difficult to obtain wide-spread agreement on “standard” interfaces and methods
for such service invocation. Thus, the challenge is to develop an open service architecture that
allows heterogeneous client devices to discover what they can do in a new environment while mak-
ing minimal assumptions about standard interfaces and control protocols.

The basic premise in developing such a component in our architecture is that providing an “IP
dial-tone” to clients isn’t enough. We must augment basic IP connectivity with an adaptive network
services infrastructure that allow users to control and interact with their environment. Distillation
proxies are one example of a network service that may require discovery and reconfiguration. We
also must provide meta-services that allow for interactions between particular separately-discov-
ered services to allow for interoperability given inevitable variability and lack of “a priori” stan-
dards. The challenge is developing an open service architecture that allows heterogeneous client
devices to discover what they can do in a new environment, and yet which makes minimal assump-
tions about standard interfaces and control protocols.

In developing this architecture, we have designed, implemented, and deployed in our Computer
Science building the following example services: 

• untethered interaction with lights, video and slide projectors, a VCR, an audio
receiver, an echo canceller, motorized cameras, video monitors, and A/V routing
switchers from a wirelessly connected laptop computer; 

• automatic “on-the-move” reconfiguration for use of local DNS/NTP/SMTP serv-
ers, HTTP proxies, and RTP/multicast gateways; 

• audited local printer access; 

• visualization of physical geography and discovered object locations via a protocol
for interactive floor maps; \item tracking of users and other mobile objects with
“caller ID;” 

• advertising available local services (or other data) to unregistered (“anonymous”)
clients. 

In realizing this architecture, we employ a few key techniques: 

• augmenting standard mobility beacons with location information, scoping features,
and announcements from a service discovery protocol; 

• using interface specifications that combine an interface definition language with
the semantics of a model-based user interface; and 

• hosting scripts in the infrastructure that:

• map exported object interfaces to client device control interfaces,

• compose object interactions, and
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• automatically remap the destination of object invocations to changing server
locations. 

 The physical components of the testbed in a local seminar room are illustrated in Figure 13. We
also leverage facilities in a collaboration laboratory (CoLab) and a student office; all contain
devices that can be accessed and/or controlled via our software.

The network services’ subcomponents are a scoped service discovery protocol and bootstrap,
scoped access control and security, and facilities for passing and mapping discovered interfaces to
client devices. We start by breaking these down into a discussion of Controllable Objects, describ-
ing issues in connecting devices to the network and providing them to local users; Service Adver-
tisement and Discovery, describing how such objects and services need to be named and advertised;
and Mapping Client Controls to Exported Objects, where we describe how to make theses interac-
tions seamless. We then dive into implementation issues and details, describe the suite of example
ad hoc mobile services incorporated into our testbed, and finish with discussion, related and future
work, and conclusions.

5.1 Controllable Objects

Most physical objects provide only manual controls. A controllable object, on the other hand,
responds to control requests or transmits status information through an exposed interface accessible
over the network. Objects must be augmented with this ability to allow for network-based access.
Issues in doing so include aggregation of objects into a controllable unit, addressability/naming,
and conflict resolution.

5.1.1 Aggregation

At what granularity must controllable objects be implemented? In keeping with our goal of
adaption, we allow it to be arbitrary. Requiring fine-grained controllable objects is difficult because

FIGURE 13.  Part of the project operating environment: 405 Soda Hall.
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individual objects may be too numerous or the expense of individual control may be too high. For
example, while it is possible to make every lightbulb its own controllable object, the sheer number
of them in a typical building, the expense of assigning processing to each one, the difficulty of wir-
ing each to the network, etc., would mitigate such a decision. Instead, control functionality could be
assigned to a bank of lights, and what is augmented is the switch bank rather than all of the individ-
ual lightbulbs. In general, the granularity at which object capabilities are exported shouldn’t speci-
fied by the architecture. The difficulty, then, is to allow client controls to aggregate and subset
controllable objects components in a manner transparent to the client interfaces to them.

We provide this feature by providing clients with a facility for hosting scripts that map exported
object interfaces to client device control interfaces and compose object interactions. The scripts
leverage the use of interface specification languages for object description, allowing access to sub-
components and composition of remote objects. This disassociates controllable object granularity
from actual control granularity.

5.1.2 Naming

Another impact of making controllable objects accessible is that the current infrastructure for
naming must be extended to include them. These objects do not have individual IP addresses or
session descriptions, but instead are accessible through servers and, due to location-based usage,
often have fine geographic scope. Users want to make queries based on geographic information
(location), data type (position in class hierarchy), scope (accessibility range), and the control
authority (the “owner” and/or position in an organization hierarchy for dealing with access-con-
trol). These properties can dynamically change, and the hierarchies are not strict (i.e., there can be
multiple paths from the root). It is unclear whether these four orthogonal components need to coex-
ist in the globally-visible naming scheme (augmenting or acting together as a fully-qualified unique
object name), or whether some can be treated as “properties” rather than elements of the name.

Existing methods for naming include using the Domain Name Service (DNS) [MD88] for
objects with unicast IP addresses or the Session Description Protocol (SDP) [HJ97] for lightweight
sessions. DNS is a widely-deployed distributed name service. SDP is a container protocol for asso-
ciating a single name with a collection of application-specific multimedia transports and their (most
often multicast) channels. SDP messages are delivered via the Session Announcement Protocol
(SAP) [Han97], an announce/listen protocol that uses scoped constant-bandwidth allocations.

Alternatives for the implementation of object naming include extending DNS with new record
types, extending SDP/SAP with new application types and finer scoping, hybridizing the two, or
developing a separate hierarchy to match this need rather than overloading DNS and/or SDP/SAP.
Further implications of this decision are noted in Section 5.2, where we describe service announce-
ment and discovery. Our current proposal for the geographic name axis is presented in
Section 5.5.1, where we describe our prototype map service.

5.1.3 Shared Control Conflicts

When multiple users attempt to share a controllable object, there is the potential for conflicts in
the requests. Existing systems manage this difficulty by providing well-formed application-specific
solutions and limiting the set of conflict states. One example is the elevator. Requests to an elevator
are not commands, but are instead idempotent inputs to an algorithm that decides the order for
actions to take place (if at all). Individual elevators react to input combinations differently, and this
is acceptable. We propose using such application-specific algorithms for controllable objects
(encapsulated behind the remote object invocation specification). Leveraging “authentication” fea-
tures such as locking (minimally coarse-grain, possibly finer) and access levels (“capabilities”) can
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assist in reducing the conflict state set and is very practical; i.e., the “owner” of the device can
always override “users,” etc.

5.1.4 Cameras as Object Interfaces

Another approach for interacting with objects is to use video capture augmented with image
processing (“computer vision”) where applicable. Example uses of this approach include fine-grain
object tracking, directionality sensing, and event triggers keyed to particular circumstances
[MF96]. For example, a camera can be used to detect the opening of a door or window. In this case,
it is the camera that exports the control interface. Using cameras for such duties has extensive
implications for security and privacy control, but is a viable alternative when direct manipulation is
not.

5.2 Service Advertisement and Discovery

The function of a service discovery protocol is to allow for the maintenance of dynamic reposi-
tories of service information, advertise the availability of this information, and support attribute
queries against it.

Service advertisement must scale with both the number of advertised services and to the wide-
area. Even as larger numbers and classes of devices become network-accessible (e.g., “IP light
bulbs”), the bandwidth consumed by these advertisements must scale sub-linearly. Fortunately,
repository information is often local in nature, and though objects can be addressed globally, it can
support eventual consistency semantics. This allows for the use of a soft-state update approach such
as an announce/listen protocol. These announcements and queries can be scoped and this scoping
can provide hierarchy. Difficulties include that the scoping granularity may be very fine, at the
level of individual rooms or network subnets/cells, and that scopes must dynamically adapt to sup-
port incremental, independent local deployment of various services.

Our observation is that this requires a technique combining the properties of a distributed name
service (e.g., DNS) and an announcement protocol (e.g., SAP). The latter “pushes” unknown
names/descriptions to the client to facilitate discovery, while the former allows the client to “pull”
information about objects given their names. The hybrid technique is to advertise the location of
local name services in addition to object descriptions. This allows a single message to, in effect,
advertise a collection of objects, and provides advertisement hierarchy (possibly, but not necessar-
ily, aligned to the naming hierarchy like DNS) with scaling sub-linear in the number of advertised
objects.

The Service Location Protocol [VGPK97], a resource discovery protocol under development by
the IETF Service Location working group, is one proposal for implementing such a service. In SLP,
query processing is performed at directory agents and distributed via multicast. Our protocol will
leverage features of SLP, specifically the query grammar and message formats.

For basic operation, the only mechanism necessary is a function to allow mobiles to map names
to values. These can be obtained by querying a local server or by receiving them via multicast (our
current prototype operates via the former.) We describe our own mechanisms for finding the cor-
rect local server or multicast addresses and initializing the mappings. Finding one of the correct
local servers is similar to delivering the correct scope attribute to the mobile host in SLP. (The SLP
scope attribute is used to administratively aggregate an otherwise disparate set of services.)
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5.3 Mapping Client Controls to Exported Objects

The network services component allows for UI widgets to remain in familiar locations and in a
familiar form even as the particular devices that the widget controls change (e.g., a light switch).
We now describe our mechanisms for enabling this behavior.

5.3.1 Transduction Protocols

A transduction protocol maps a discovered object interface to one that is expected by a given
client device. It supports interoperability by adapting the client device’s interface to match the con-
trollable object’s interface. It allows for custom user interfaces to ad hoc services, such as allowing
a virtual “light switch” on a control panel to always control the closest set of lights. Without a map-
ping function, every change in location might require a new interface be retrieved.

An issue with transduction protocols is how to map control functions into a UI supported by the
portable device. As an example, assume a client device has a two-position switch widget for use
with the local light controller. At a visited location, the light controller supports continuous dim-
ming. In this case, the client may substitute a slider widget for the switch. If it cannot do this (or
chooses not to), then the purpose of the transduction protocol is to map the on/off settings of the UI
to one of the two extremes of the actual dimmer control.

To support interoperability, we allow services to transfer an entire GUI to the client in a lan-
guage it understands, avoiding the need for transduction. (This similar to the Java applet usage
model but with multiple language support where necessary.) Whenever possible, though, we aug-
ment the GUI (or replace the GUI completely) with an interface specification (described in
Section 5.4.8). Through the interface specification, the system discovers the two data types that
need transduction. This allow the mapping function to be inferred (heuristically, from a library, or
by querying the client) and then installed at the local transducing proxy that sits between the two
endpoints. The interface specification can also be used directly to generate a rough GUI when no
interface implementation appropriate for the client is available, or when only portions of the con-
trollable objects’ interface is of interest of the user (i.e., to conserve screen real estate or to add a
button into a user-defined control panel).

The interface descriptions not only allow for data type transducers between client and server;
they also provide the critical layer of indirection underneath the user interface. Examples include
composing “complex” behaviors and remapping the destination of object invocations to account for
mobility.

5.3.2 Complex Behaviors

Objects have individualized behaviors. We wish to couple and compose these individual behav-
iors to obtain more complex behaviors within the environment. For example, consider a scenario
where music follows you as you move around a building. One behavior of the sound system is to
route music to specific speakers. A behavior of location tracking services is to identify where spe-
cific objects are located. A “complex” behavior allows us to compose these more primitive behav-
iors of sound routing and location tracking to obtain the desired effect of “music that follows.”

A key problem is that there is no common control interface for individual components. Further-
more, some behaviors may require maintenance of state that is independent of both subcompo-
nents. An example of the latter is instructing the coffee maker to brew only the first time each
morning that the office door opens. Another issue is a policy-level difficulty implied by this sce-
nario: resolution of incompatible behaviors. If another user considers music to be noise, the visiting
user’s music may or may not be turned off in their presence, depending on seniority, social conven-
tion, explicit heuristics, or otherwise. At a minimum, the system must guarantee that it will detect
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such incompatibilities and notify the user(s) involved in order to avoid instability (e.g., music puls-
ing on and off as each individual behavior is interpreted).

Once again, as in transduction, our solution is to use interface discovery (learning new objects’
input/output data types), paired with the data type transducers (for manipulating those data types) to
allow objects to be cascaded to achieve the desired complex behaviors. Additionally, we supply
intermediate entities (proxies) that maintain state that is independent of the constituent subcompo-
nents. This allows for the incorporation of such features as conditional statements and timing infor-
mation.

5.4 Implementing Service Interaction

This section describes some of the implementation details of the services architecture subcom-
ponent.

5.4.1 Basic Operation

The prototype allows a mobile host to enter a cell, bootstrap the local resource discovery server
location, and acquire and display a list of available services. It also allows users to maintain a data-
base of client-side scripts to be executed when particular services are discovered for use in recon-
figuration, local state updates, and to trigger location-dependent actions. Similarly, a set of scripts
are maintained in the infrastructure at each site for locale-specific adaption such as transduction
and composition. The prototype also allows for simple, incremental addition, deletion, and modifi-
cation of available local services.

The key components of the compete system are the “service interaction proxy” (SIP), the “ser-
vice interaction client” (SIC), and the “beaconing daemon” (beacond) programs. These prototypes
implement and integrate selected infrastructure components of our overall mobile services architec-
ture. The SIC runs on the client device and provides the base functionality for discovering and man-
aging services. SIPs run at domain-specific granularities and aggregate a group of services with a
single set of advertisements. The SIPs also manages the proxies used between the client devices
and the individual services. Beaconing daemons run at each base station and are affiliated (not
uniquely) with the SIP it is advertising.

An example SIC screenshot is shown in Figure 14. SIP and beacond use configuration files and
command-line switches, and thus user interfaces are not shown.

5.4.2 System Setup

 Each SIP process maintains a database of the services and service elements that it provides to
mobile hosts. An example startup file for such a database is listed in Figure 15. It contains three
types of entries: services, values, and properties. Values are used for generic (key, value) lookups.
These are useful for, e.g., detecting the need to update server addresses. Services and properties are
used to specify what, where, and how services are available from that particular location. Each ser-
vice has a unique name, and maintains properties such as the version number, a pointer to an asso-
ciated ISL file (described in Section 5.4.8), pointers to particular language implementations of user
interfaces for the service, and the geographic location (if any) for use with maps. Values and prop-
erties may just be pointers to another SIP, allowing simple incremental deployment to subdomains
and yielding a notion of topology.
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FIGURE 14.  A screenshot of the Service Interaction Client. The SIC is
currently a series of buttons that can be used to retrieve and invoke
application interfaces.

FIGURE 15.  An abridged SIP services database example
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5.4.3 Message-level Detail

The client enters a cell with a beaconing daemon. The daemon sends periodic broadcasts that
contain the bootstrap address and port number of that cell’s SIP. The client registers with the base
station to establish IP connectivity if it needs to. It then requests the well-known meta-service
index, which returns a list of the services available. Based on the contents of the reply, the client
renders labelled UI buttons for unknown services, executes scripts in a database to allow for locale-
specific reconfiguration, and tells the local SIP to remap the location of running services and setup
any necessary widget binding remappings.

When a user wishes to use a particular service, the client software checks its local cache of
applications. If an interface supporting the requested application is not there, it asks the SIP for the
service’s “properties.” This is a list of available interface descriptions and/or implementations. It
also receives any service metadata (such as version numbers). It then chooses either to download a
particular interface implementation (e.g., as a Java applet), the generic interface description, or
both. The SIC then unpacks the received archives, sets up transducers matching the interface
description to the device characteristics, and finally executes the GUI.

An example exchange of protocol messages for a client moving between SIPs is illustrated in
Figure 16.

5.4.4 Client Bootstrap

For a client to use services, it must first find the address of the local resource discovery server or
the local multicast address where services are advertised. In our architecture, this bootstrap above
IP is minimal: there is an indirection embedded in the mobility beacons. This minimal bootstrap

FIGURE 16.  Protocol message timings for a client moving between SIP
servers (dashed lines are beacons): (a) index #1 request/reply (b) request/
reply for “lights” ISL file and interface (c) index #2 request/reply (d) “lights
dim” button press retrieves new ISL file to remap RPC, then completes.
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standardizes the mechanism without constraining its interpretation, thereby allowing variation in
resource discovery protocols as they evolve.

5.4.5 Beaconing

Beaconing is required in a system to facilitate notification of mobility-based changes in the rel-
ative position of system components. Its use is motivated by inherent availability of physical-level
hardware broadcast in many cellular wireless networks and the need to track mobiles to provide
connectivity.

 Two issues arise once the decision to beacon has been made. The first is which direction to
send them: uplink, downlink, or both. The second is what information to put on the beacons, if any
at all. (An empty beacon acts as a simple notification of the base station address, available in the
packet header.) These issues are discussed in the following subsections.

5.4.5.1 Beaconing Direction

In terms of choosing whether to have client devices or infrastructure servers beacon, existing
systems can be found which have made either choice. Client beaconing is used in both the Active
Badge [HH94] and ParcTab systems [SAG+93], while server beaconing was used in Columbia
Mobile IP [IDM91]. IETF Mobile IP utilizes both periodic advertisements and periodic solicita-
tions.

 One might expect that the different policies optimize for different applications’ operating
modes. This is indeed the case: there are trade-offs in such a decision, as it varies allowances for
privacy, anonymity, particular protocols’ performance, and scalability.

There are a number of metrics for considering qualitative trade-offs between the two decisions: 

• Power: Less power is consumed at the mobile by periodically listening than by
periodically transmitting, but this difference can be mitigated by hardware/MAC
design [SGHK96]. 

• Detection: When base stations (BSs) beacon, mobiles need not transmit to detect
when all contact is lost. When clients beacon, BSs need not transmit to detect user
mobility.

• Multiples: With BS beaconing, detection of multiple beacons can be used to assist
handoff. With client beaconing, the number of received beacons specifies the num-
ber of clients in the cell. 

• Location Anonymity: When BSs beacon, anonymity is preserved for non-transmit-
ting mobiles; when clients beacon, the granularity of the infrastructure is invisible
to users.

• Geographic Mapping: BS beaconing maintains a consistent mapping between
geography and beacon broadcast cell; client beaconing maintains a mapping of cli-
ents to multiple cells. 

• Bandwidth Scaling: BS beaconing implies less beacon traffic per cell given a natu-
ral many-to-one mapping of mobile hosts to base station cells. Conversely, client
beaconing optimizes for very small cells. (Assuming other parameters remain con-
stant.) 

Our system uses base station beaconing. We believe this is the correct design choice for three
key reasons: the support for user (rather than infrastructure) anonymity, better bandwidth scalabil-
ity in a network where there are many MHs per BS, and because power is more precious on mobile
devices.
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5.4.5.2 Beacon Augmentation

 The second question is whether to augment mobility beacons with additional data. Augmenting
beacons with application-specific data does two things. It makes data available to mobiles before
registration (in the Mobile IP sense), allowing the possibility of “anonymous” access to this broad-
cast data (at a cost of management overhead and increased beacon size due to the piggybacking). It
also aligns the mobility beacons with a form of announce/listen protocol that has limited announce-
ment timer adaptability. The announcement timer can only be set to discrete multiples of the base
beaconing rate (that rate determined as sufficient to detect handoff within some acceptable latency.)

Possible uses for such piggybacked beacon data include: 

• merging of other periodic broadcasts to amortize header and MAC overhead (e.g.,
NTP beacons, Mobile IP foreign agent advertisements); 

• pricing information useful to the host to determine whether to register; 

• commonly accessed time-variant data; \item a list of some or all of the available
services in the cell; 

• “tickets” for providing scoped access control (discussed in Section 5.4.7). 

The utility of beacon payload augmentation is highly dependent on the direction of the beacon-
ing, traffic patterns, and application mix. An argument against augmenting beacons at all is that
orthogonal applications shouldn’t mix their data units that may have been “properly” sized by the
application (c.f., application-level framing [CT90] or joint source-channel coding [MVV96]).

We choose to augment our beacons with bootstrap information, a ticket for scoping of services,
and a dynamically configurable application-specific payload. The encoding is shown in Figure 17.
One common application-specific payload is the contents of the cells’ index, allowing anonymous
assessment of available services and reducing discovery latency.

Whether merging data into beacons is a benefit depends on the metric of evaluation. We are still
trying to quantitatively determine which data, if any, is best dedicated to these bits for optimizing
reasonable client-driven workloads.

5.4.6 Charon: Proxied Secure Access

Authentication to network services is based upon the Kerberos IV [Ste88] infrastructure. We
have engineered a partitioning of the Kerberos implementation, called Charon [FG96], for use
between resource-poor clients (e.g., PDAs) and a proxy. This partitioning allows the proxy to inter-
act with the Kerberos infrastructure on behalf of the clients, giving the clients full authenticated
(and optionally encrypted) access to the services but relieving them of the burden of having a full
Kerberos implementation. Because the Kerberos infrastructure itself is unmodified, all of the secu-

FIGURE 17.  The service beacon encoding includes bits for the
service interaction bootstrap and location queries. Not shown are the
details of any particular mix of application-specific payloads.
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rity features of Kerberos are preserved, and resource-capable clients can make use of Kerberos as
they normally would.

Charon is our proxied implementation of Kerberos that provides indirect authentication and
secure communications with personal mobile devices. By indirect authentication, we mean that
most of the computational resources needed to conduct the Kerberos protocol and establish a secure
channel with a network service are located at a proxy, a process running on a resource-rich desktop
workstation in the well-connected infrastructure. This proxied approach simplifies the client soft-
ware considerably: minimal client-side software is sufficient to preserve Kerberos semantics and
security guarantees, while off-loading substantial protocol processing, credentials management,
and other housekeeping tasks to a proxy in which minimal trust must be placed.

Charon provides three secure-access models:

• A means of authenticating clients to a service attachment point (proxy) using a
Kerberos-based protocol;

• Establishment of a secure communication channel to that attachment point, on
which future logical channels can be multiplexed, thus providing encryption to the
proxy when link-level encryption is weak or unavailable;

• Both end-to-end and proxied access to two-way-authenticated Kerberized services
in an existing Kerberos infrastructure.

Only DES encryption and decryption need be ported to clients; in our environment these clients
may suffer from limited resources and dissimilar development environments, both of which would
make a full port of the Kerberos implementation exceedingly difficult. Furthermore, rather than
understanding multiple message formats and communicating with multiple Kerberos entities, the
client needs to understand only a single message format and communicates exclusively with a sin-
gle entity (the Charon proxy), which can also serve as a network gateway if necessary.

Neither the user’s Kerberos password nor the key required to construct Kerberos authenticators
(used when requesting access to new services) ever leave the client. Charon has the same immunity
to protocol-based attacks as Kerberos does, and is more immune to certain end-to-end attacks
because of the nature of the devices on which it is designed to run, providing an alternate means of
Kerberos authentication for security-conscious users.

5.4.7 Scoped Access Control

Making services available to visitors brings up a host of general security issues, including those
specific to the wireless domain [Bro95,AD94]. In addition to standard cryptography-based security
with passwords, capabilities (e.g., Kerberos), and public-key encryption, service interaction sys-
tems specifically require additional access control. This is due to our extending devices to be net-
work-addressable entities. In general, global access control is necessary, but not sufficient; the
expected behavior that environmental changes can only be affected by people in that environment
(e.g., lights cannot be turned off by a person across the country) has been broken. Maintaining this
norm is important when extending existing human social metaphors into an environment with con-
trollable objects. We address this by embedding tickets, random fixed-length bit vectors, in the
mobility beacons and requiring the current ticket to be included in all communications to servers.
Periodically changing the tickets in an unpredictable way (truly randomly) and scoping the broad-
cast (implicitly via the cellular wireless network broadcast cell or explicitly with the IP multicast
TTL field) prevents remote access from nodes even on the access control list that aren’t local. This
pairs the geographic scoping of the environmental controls (what we cannot control) to the topolog-
ical scope (what we can control). This ticket-based exclusion can be overridden (by separately mul-
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ticasting or unicasting the ticket when necessary), but by making the default access restricted, we
better emulate the existing paradigm.

5.4.8 Client Interfaces

5.4.8.1 Motivating Interface Specifications

Clients can be computationally impoverished, have variations in display (color depth, resolu-
tion, screen size), support different interface paradigms (keyboard, pen, touch), and are often inter-
changeable with one another (and therefore not preconfigured).

Due to the need to support such end devices, especially extremely resource-poor PDAs, our
architecture focuses on providing thin client interfaces and offloading processing to proxies. Rec-
ognizing that expecting custom UIs to be available for all services on all different types of hard-
ware isn’t realistic, we propose exposing controllable objects through an interface specification
language (ISL). The ISL is used in addition to other reference language implementations of an
interface, thus allowing for compatible but independent coexisting interfaces. It exposes the syntax
of each services’ control interface. Upon discovery of a service, the client device checks to see if a
language implementation is available that it can support, and if not, uses the ISL file to learn the
RPC calls and parameters that can be used to access the service. It additionally allows the device to
adapt the representation to a format appropriate for the device’s characteristics, and allows the user
to place the elements manually and independent of one another for fine-grain control. Automatic
layout heuristics can also be used.

5.4.8.2 Interface Specification

The conventional notion of an Interface Definition Language (IDL) (e.g., the CORBA IDL) is
to specify parameters, parameter data types, and parameter-passing conventions for remote object
invocation [Cor97]. The basic function of a Model-based User Interface [SFG93] is to specify
interfaces as structured widget hierarchies along with sets of constraints. The actual interface is
derived from the model at run time or through a compilation step. This allows interfaces to main-
tain a consistent look-and-feel even as elements are added and deleted. Our goal is to unify these
approaches, allowing remote object APIs to be augmented with UI models. This hybrid would
allow both composition of the object invocations (RPCs), and separate subsetting/aggregation of
object UI elements. We call this combination an interface specification, and its grammar an Inter-
face Specification Language, or ISL.

As a concrete example, we would like to allow an application to buffer DNS queries (calls to
one object method) through a local cache (calls to another object), while instantiating the new func-
tionality either through the original UI or via a new one.

An important design criteria is to make the hybrid robust enough to be applicable to a variety of
classes of client devices (each with their own implicit assumptions about widget implementation),
yet simple enough to be manageable.

The use of an ISL requires services to explicitly support a layer of indirection through the ser-
vice discovery mechanism, allowing transparent remapping of individual interface elements. This
indirection is critical for allowing services to be composed. As an example, the RPC command to
spawn an audio conference can be rerouted to a client script that first reduces the volume of the
room’s music player and then passes along the original RPC.

Our current implementation has interfaces manually implemented in Tcl/Tk and Visual Basic.
Currently, ISL uses an ad hoc grammar tuned to Tk. A related developing protocol with very simi-
lar needs is the Universal Remote Console Communication Protocol (http://trace.wisc.edu/world/
urcc), motivated by research in supporting interfaces for disabled users.
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5.4.8.3 Prefetching

As an optimization, clients can prefetch the ISL files for active services. We illustrate with a
concrete example from our prototype. As the user moves between rooms, the light controller appli-
cation UI remains the same. When the user changes the lighting in a new cell, the client application
sends the new SIP a request for the lights ISL file, enabling the RPC command invoked by the
existing interface to be remapping so that the recipient will be the new server. This late-binding is
used to conserve bandwidth on the wireless link; the total number of ISL files may be large and the
client may use one only infrequently.

The problem with late-binding is that this entire operation latency seen by the end user; in prac-
tice it can be perceived as a possible error condition. (The button “doesn’t work” for a number of
seconds after it is invoked, and for this period it should probably be greyed out in the UI.)

This delay can be minimized by transparently remapping the interface elements to the new
server as soon as possible. To do so, we add one bit of per-service state, “active vs. inactive.” This
flag is set to “active” whenever there is an RPC call from that service, and reset to “inactive” by a
timeout. Upon receipt of any beacons with a new SIP, services with the “active” bit set (and avail-
able in the new location) have their new ISL files prefetched automatically. (In our current imple-
mentation, the index meta-service is always prefetched.) Delays can be further minimized through
mobility prediction [LM96], allowing prefetching in response to assumptions about user mobility
patterns.

Prefetching is important in this domain because the delay experienced by an end user using a
high-latency, low bandwidth wireless interface can be substantially less with prefetching and trans-
parent remapping than with demand-paging.

5.4.8.4 Client-side Security

 As for mobile code security, by transferring only an interface to the client, it is probable that a
sandboxed environment (such as Java, Safe-Tcl, or Janus [GWTB96]) can be used without con-
straining the service’s functionality. This is another benefit of the proxy-based access model: it seg-
ments the security domain and thereby allows potential internal holes to be screened from the user.
This is quite similar in principle to Java’s restricting applet communication to the applet provider.

5.4.9 Naming Scheme

We express controllable object names as a globally-unique fully-qualified object name
(“FQON”) and a tuple of properties. Some properties are required while others are optional but
standard. (Service-specific properties are also allowed, of course.) The set of required properties
includes: 

• geographic location as a name hierarchy of maps that contain the object 

• the data type of the object as a class in a class hierarchy and a version number 

• the name of the “owner” of the object to indicate where and how to obtain authen-
ticated credentials (if necessary)

• a pointer to the controlling server process (machine/port) 

A common but optional property is a set of pointers to “peer” controllable objects and tags that
note the I/O data flow that makes them peers. These are useful for specifying, for example, that the
(analog) input source to a television monitor is a particular A/V switcher.

We not as of yet incorporated scope information into the object properties, but like the rest of
our proposed naming scheme, this remains as critical area for future research.
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5.5 Prototype Mobile Services

In addition to the prototype service discovery and interaction implementation, we have devel-
oped a number of services using the framework. These include maps that specify discovered
objects’ positions, autoconfiguration, location tracking with privacy allowances, audited printer
access, and interfaces to audio/visual equipment. We now describe each in turn.

5.5.1 Maps

Given a widely distributed service interaction system supporting very fine-grained services,
management of even the subset of information available to the client becomes non-trivial.

We have experimented with using maps for explicit management of these services at multiple
locations. Map content is separated into three domains: network connectivity (topology and link
characteristics), physical geography (object locations and floorplans), and administrative domain
(access rights, pricing, hierarchy).

Our prototype, of which an example view is shown in Figure 18, focuses on physical geogra-
phy: allowing objects to note their location on multiple overlapping maps and receive requests
passed through the map interface (via a button press on the service indicator on the map).

The map protocol itself is a prototype based on using absolute positioning. It is designed to
allow objects to position themselves without knowing exactly which map(s) the user is using. It is
designed to allow maps to maintain hierarchical (“containment”) relationships in a distributed,
extensible manner through the absolute positioning information. Represented objects must be sized
in accordance with the scale of the map(s) they are located on.

Currently, the map protocol hierarchy is defined to mirror the service interaction proxy hierar-
chy: each SIP contains a single pointer to a local map. The map hierarchy thereby maintains the
same characteristics as the SIP hierarchy: it is can be arbitrarily nested and extended to subdomains
without affecting other maps or requiring objects to relocate themselves.

Each SIP database contains pointers to local maps (and potentially different encodings of the
same map) and to map metadata including the positioning information (latitude/longitude coordi-
nates of two corners) and peers. This technique extends the technique used for notation of physical
geography in proposed “LOC” DNS record type [DVGD96] to objects without IP addresses.
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5.5.2 Proxy and Gateway Autoconfiguration

Proxy and gateway autoconfiguration is a lightweight service built atop the server reconfigura-
tion service. The difference between it and server reconfiguration is simply that proxies and gate-
ways run in the infrastructure, between client and server. Thus, the infrastructure needs to explicitly
support spawning of these entities. Examples of such useful intermediate agents include web prox-
ies that perform on-demand dynamic transcoding [FBGA96], network data caches, real-time media
transcoders [AMZ95], and multicast-to-unicast gateways for multicast-unaware client devices (i.e.,
most PDAs).

Proxy, gateway, and server autoconfiguration is important in a mobile environment for more
than just efficiency. Using the “best current practice” technique of hard-coding DNS servers either
as /etc/resolv.conf entries or in the Windows registry, if a user were to move from a location behind
a firewall to one that is not, all lookups will fail until an out-of-band technique is used to find a new
server and the entry is manually updated. The Network Time Protocol is dependent on server loca-
tion due to its use of RTT estimation, and is therefore especially suitable for use with automatic
reconfiguration. A failure to keep accurate time can break some security systems, notably Ker-
beros. Spawning a local RTP gateway/transcoder for unlayered data in MBone sessions may be
necessary if movement has changed the bottleneck link to a source or to facilitate local manage-
ment of inter-session bandwidth sharing [AMK97].

Autoconfiguration also adds a level of fault tolerance. If a network link goes down, SIP beacons
coming across the failed link will stop. The client will wait for other beacons to be obtained (c.f.,
overlay networking vertical handoff), and reconfiguration to the new servers will happen transpar-
ently.

FIGURE 18.  Map with discovered object locations,
configured for a user in the RF cell including room 405.
Clicking on entries spawns the interface to that entity.
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Our current implementation simply allows for callbacks to be set that track value entries in the
SIP databases.

5.5.3 Location Tracking

 Location tracking is addressed in other systems [ST94,HH94], but these systems suffer from
the limitation that client devices must be turned off or not carried to ensure privacy. Instead, users
should be comfortable that even while they maintain continuous access (“any time, any where”),
they can be assured they are not vulnerable continuous detection (e.g., while in a restroom).

To address this difficulty by using a beacon payload extention. A “caller ID” feature is imple-
mented by piggybacking location queries (consisting of the name of the requestor, the name of the
requestee, and an address and port for the reply) on the beacons, allowing the client to reply only if
it desires. This feature allows selective exclusion of individual location requests. This would useful,
for example, with small children: their device can be configured to only respond to location queries
from their parents.

5.5.4 Printer Access

One of the most common examples in the resource discovery literature is local printer access. In
our implementation, after the discovery protocol finds the local printer and notes it on the map,
clicking on it (or on the “print” SIC button) pops up a dialog box that can be used to send a client’s
postscript file to the local print server. The server then checks the data, logs the request, prints the
file, and returns any status and/or error messages.

5.5.5 Motorized Cameras

We have built software to control both the Sony EVID30 and Canon VCC1 motorized cam-
eras.. The unified user interface to the cameras is shown in Figure 19. Operations supported include
pan, tilt, zoom, speed controls, software presets, and combining multiple camera controls into a sin-
gle applet. 

FIGURE 19.  Screenshot of the user interface to the camera controls.
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The camera controls are used extensively by members of a current UCB class (“CSCW using
CSCW”) with remote participants . They use the controls to allow better monitoring of whoever is
speaking and to frame a group of speakers into a single view

5.5.6 405 Soda Room Interaction

The “high-tech seminar room,” where weekly MBone broadcasts of the Berkeley Multimedia
and Graphics Seminar take place, is equipped with a variety of equipment: two slide projectors, a
light controller, a video projector, a VCR, a receiver, a DEC workstation, and an Intel PC. All the
devices are attached to an AMX corporation control switcher or routed via an AMX router. The
DEC workstation talks to the AMX via a RS-232 serial connection, which allows the workstation
to act as the control interface.

5.5.6.1 Design and Architecture

The application, like others in our architecture, is built using the principle of application parti-
tioning [Wat94]. Due to the potential lightweight nature of clients, the server is required to bear the
brunt of the effort to support fault tolerance, access control, and other such duties. Features can be
added to make the internal system interactions more robust with little or no change to the client-
side code.

The server runs on an extended Tcl/Tk wish shell which includes the base AMX functions. The
server opens an RPC socket and listens for requests to convert to AMX commands. It is also
responsible for maintaining the hard state of the system. This leaves the clients free to act as only a
UI and cache for soft state.

5.5.6.2 Room Interfaces

Our initial implementation of the room controls includes two separate monolithic Tcl/Tk pro-
grams for the room’s control, one a superset of the other. The first handles only the lights, while the
second handles the most useful buttons (showing them all is excessively complex). The latter inter-
face is shown in Figure 20.

It was these implementations that led us to observe the utility of functional inclusion and the
need for variability in the interfaces. It also led us to realize that independent objects should be
composable. With such a design, users could create unique UIs that makes the most sense for them-
selves by leveraging the scripting language and ISL. We are working on allowing the user to main-
tain sets of service elements by manipulating the interface specifications transparently, for example
by dragging-and-dropping individual elements to and from a toolbar.
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5.5.6.3 State Management

Ideally, requests to the AMX could be idempotent, and no state would have to be maintained in
the system. However, by the nature of the equipment to which it is attached, AMX requests are not
idempotent, and cannot be coerced into idempotent versions. For example, if we want to turn on the
receiver, the only request we can give is equivalent to “toggle receiver power,” which may very
well turn the receiver off. The only way to know the effect of this request beforehand is if long-
lived state variables are maintained.

Because bandwidth between the client and server is often valuable, state variable updates need
to be minimized. Our server is responsible for maintaining consistent state between and during cli-
ent sessions. Clients are responsible for querying the server for the state info upon connection initi-
ation. For consistency, clients are required to send an update request to the server to ask for state
changes. Clients may only commit the change upon receipt of an acknowledgment.

Another issue is dealing with inconsistencies due to manual events. Devices are unable to
inform the AMX when a user presses a button on their front-panel. If a user wants to insert a video
cassette into the VCR, he or she must first turn it on; the AMX does not register this manual event.
Since this is such a common problem, we accept that, at times, the state will become corrupt. We
equip the user to correct such inconsistencies via the two buttons at the bottom of the client inter-
face labelled “Deactivate Panel” and “Activate Panel.” Whenever a discrepancy in the state occurs,
the user can deactivate the panel. All the state-related buttons will then only modify the state vari-
ables (on both the client and the server) and not make requests to the AMX. This means the user
can reconcile the information on the panel with reality, then reactivate the panel and once again
right the system to a consistent state.

FIGURE 20.  Screenshot of the monolithic user interface to the A/V equipment.
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5.5.7 326 Soda Room Interaction

The “MASH Collaboration Laboratory,” or CoLab, is a fully outfitted room designed for exten-
sive use with collaborative multicast applications. The room’s equipment includes a Xerox LiveB-
orard, four television monitors, four motorized cameras, an A/V routing switcher, an echo
canceller, four PCs with output scan-converted and fed into the switcher, a VCR, an audio receiver,
an infrared repeater for mimicking remote control button presses, and controllable power switches
connected to a lamp and “ON AIR” sign. Weekly broadcasts of a Fall 1997 UCB course entitled
“Computer-supported Cooperative Work Using Computer-supported Cooperative Work” are
sourced from here, and remote participant feeds are sent to the rooms’ four monitors and audio
receiver. 

Though the equipment is different from that AMX-based system in 405 Soda, many of the capa-
bilities and issues raised are similar and we will not repeat the discussion here. Only a subset of the
room’s media stream control functionality has been integrated into our architecture (camera con-
trols and A/V switching).

5.6 Discussion

A layered view of our architecture is presented in Figure 21. This representation exposes how
the various mechanisms described in this paper interrelate. It also illustrates how alternative mech-
anisms could replace the particular ones we have chosen without affecting the overall service archi-
tecture. For example, if some to-be-determined Service Location Protocol scope delivery
mechanism were to replace our augmented beaconing mechanisms for location management, the
interface discovery and data type transduction could remain unaffected.

The lowest layer is the Announcement layer. It lies directly above the network and transport lay-
ers and implements the basic service bootstrap mechanisms. This includes the embedding of local
server information in the beacon payload, the ability to implement scoping mechanisms through the
indirection gained by the beacons, and the possibility for additional application-specific payload
augmentation as a performance enhancement. Its most basic function is to find servers and users.

The Query layer uses server location information from the announcement layer. It adds the abil-
ity to interact with found entities such as resource servers and service interaction proxies, and pro-
vides a structure for attribute queries (e.g., requests for a device-specific service applet interface).
Its most basic function is to allow entities to talk to other entities.

The Interface Description layer is built on whatever query protocol is exposed by the query pro-
tocol layer. It defines the set of possible interface descriptions and their semantics. Its most basic
functionality is to map between the client device interface and the interface advertised by discov-
ered objects.

The highest layer is the Application layer. It uses the interface description language exposed by
the interface description layer. It encapsulates application-specific state or data not captured by the
lower layers. Examples include attaching semantic meaning to particular names (i.e., “camera”)
and defining relationships between data values (i.e., the map protocol hierarchy).
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5.7 Related Work

The Rover [JDT+95] and Wit [Wat94] systems also recognized the need to split applications
into a lightweight front-end and more heavyweight proxy at the last hop wireless link. Rover allows
the pieces that comprise the partitioned whole to migrate between these two points, but the imple-
mented prototype applications generally only exploit this for moving application data units such as
mail messages, news articles, web pages, or calendar entries.

The Service Location Protocol (SLP) [VGPK97] is an example resource discovery and service
registration mechanism that can also function as a fine-grained name service. We are interested in
moving our resource discovery mechanism over to this evolving Internet standard. Open issues
include its undefined “local” scope designation and lack of an explicit scope hierarchy and peering
equivalent to our use of pointers in a service database. Our mechanism for dynamically updating
the current SIP location could be adapted as a scope discovery mechanism and coexist with other
such mechanisms in the proposal (i.e. having a scope DHCP option).

 The seminal ParcTab [SAG+93] and Active Badge [HH94] systems, along with related work
by Schilit [SAW94,ST94,Sch95], were among the first to attack the issues of client applications

FIGURE 21.  A layered view of the mobile services architecture.
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and network support for mobility in tandem. We borrow much from this work, including the focus
on mapping, event notification, and support for impoverished devices. There are some key differ-
ences. We support distributed servers, rather than a centralized repository. We employ discovery
mechanisms, interface code mobility, and generalize to heterogeneous devices; these are unneces-
sary in their local-area, homogeneous environment with pre-installed custom applications. We use
server beaconing rather than client beaconing, and allow the beacons to bootstrap resource location,
define scope, assist fault detection, and provide for some location management.

 A transportable X display [WRB+97] is a variation on interface code mobility; it moves users’
existing interfaces as they move, not unknown applications’ interfaces or interface descriptions. It
has the advantage that applications need not change at all, but suffers from the limitations that 1) it
doesn’t support transformations of the interface to formats more suitable to particular client
devices, and 2) it does not expose a layer of indirection underneath widget invocations.

 The Mobisaic [VB94] and Dynamic Documents [KPT94] projects support a HTML-based
structure for varying, location-dependent interfaces. Our scheme generalizes these approaches by
incorporating resource discovery and aggregating/subsetting different interface elements.

The Georgia Tech CyberGuide project [LKAA96] focuses on prototyping applications aug-
mented with various positioning systems, potentially without communications at all. Using such an
approach requires that devices be manually adapted to new environments.

Our conception of a “proxy server” is based on the model expressed explicitly in the Berkeley
Client/Proxy/Server model [FBGA96] and implicitly in other work [BSAK95,AMZ95] that places
application-level or network-level entities near, but not at, the endpoints of communications. This
is another way of thinking about Active Networks [TSS+97], driven by end-to-end design princi-
ples [SRC84]: push agents to as close to the endpoints as possible, but no further. This concept of
leveraging the well-connected, computationally powerful side of the wireless link (via “proxies” or
“agents”) pervades mobility research. It is also driven by the growing availability of workstation
farms [APC+95] designed to provide compute resources for just such applications.

5.8 Continuing Work and Future Directions

Our continuing work involves iterating over the design, refining the implementation, and inves-
tigating various other approaches.

5.8.1 Wide-area issues

The current implementation has been tested only in a local area environment; work is continu-
ing as to the specifics of how such servers aggregate (with union and intersection operations) and
their hierarchy. This relates to naming issues and query semantics.

5.8.2 Building control and support

We are working with building architects and engineers at the Center for the Built Environment
(http://www.ced.berkeley.edu/cedr/cbe) to incorporate devices such as the centralized heating and
air conditioning, vents, fans, and temperature/humidity sensors into our system. This could allow
users to close the environmental control loop and adapt areas in accord with user preferences as
they move. Additionally, we hope to apply this model to the corporate environment team-based
work process, allowing per-user location-based interfaces. For example, a R&D person visiting the
Accounting division is probably interested in different services than the local workers in the same
area.
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5.8.3 Delegating operations

In general, mobiles may be allowed controlled access to CPU resources directly rather than con-
figured services. This allows custom installation of “last-hop” network protocols, codecs, and secu-
rity modules that are too compute-intensive to run on the end-client (e.g., for allowing the use of
end-to-end session keys in an untrusted domain, for delta-encoding data, or for deploying private
handoff prediction.) This requires a management layer for implementing policy decisions granting
access to bandwidth, disk, and CPU. It also requires a mechanism for securely delegating opera-
tions [KWP97].

5.8.4 Queued RPC

Queued RPC mechanisms [ADT+95,BB97] support disconnection and link variability by incor-
porating application-managed messaging state. Queued RPC and asynchronous notification support
is not incorporated into our system, but should be. (On the other hand, applications should also be
able to ignore failed RPCs rather than queuing them, a more appropriate paradigm for situations
such as with equipment interaction --- the client interface is designed to express the current state of
external processes and most messages can specify idempotent operations.)

5.8.5 Maps

We wish to add additional functionality to our map application, including the ability to tie
together physical geography to network connectivity. Servers could be pinned to their location on
the floorplan and the connectivity graph automatically overlayed as it is discovered. Also to be
added are the specifics of the administrative domains: overlaying the list of services available at
groups of servers on the map, and extensions to illustrate hierarchy.

5.8.6 Interface specification grammar and compiler

A full specification of the ISL grammar and UI generation for different platforms is work-in-
progress. Candidate base languages include HTML, Java, the CORBA IDL, a hybrid, or a fully cus-
tomized design.

5.8.7 Fault tolerance

To maintain service on a local subnet in the face of a possible faults in the local SIP, we could
leverage the property that beacons are equivalent to soft-state updates, and that therefore their dis-
appearance implies a failure condition.

By having SIP servers maintain “neighbor” pointers to each other (administratively defined, or
inferred through occasional expanding-ring broadcast searches), when SIP beaconing stops, these
pointers to peer and/or hierarchical service beacon providers can be used to find another SIP still
operating and accessible. Using a recovery protocol, an out-of-band request is made to extend the
scope of the new SIP’s beacons to the affected subnetwork. This can be done by increasing the
multicast TTL scope of the beacons to allow it to cross the transit network between the subnets or
by using IP-in-IP encapsulation to tunnel. Such a solution addresses the failure condition by allow-
ing access to remote services while the local fault is being corrected. The difficulty is determining
whether maintaining/discovering these neighbor pointers is feasible.

5.8.8 Geographic locality

Currently there is no notion of requiring the tie between physical geography and network topol-
ogy to be explicit. Users given IP access are expected to navigate through the global Internet where
little or no locality is exposed even though it can be exploited. For example, the only hints of geo-
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graphic information are out-of-band channels, heuristically through the IP interface domain name
(“whitehouse.gov” in Washington, DC), IP address-to-city registration mappings available through
WhoIs, or possibly the experimental DNS “LOC” record type.

Work has been done to allow clients to recreate these topological relationships for a small class
of services using limited support from the network [GS94]. We’d like to overload our hierarchical
service infrastructure this functionality directly. To do so, each service interaction server maintains
“pointers” to others in the hierarchy and to peers (as in the above for fault tolerance). The pointers
are then links in a geographic chain similar to the more familiar concept chains used in the WWW.
In other words, just as HTML hyperlinks associate data based on content without regard to geogra-
phy, neighbor links associate network topological locality without regard to content. Such links can
be set up either manually with multi-lateral peering agreements (people agree to link topological
neighbors), through occasional multicast expanding ring searches, or by inferring neighbors
through the name and scope embedded in service advertisements. This requires no router support
and can be incrementally deployed. As more links maintain a service advertisement beacon with
these pointers, the leaves of the hierarchy would be filled out, allowing clients to infer a view of the
geographic structure from their location. This gives us the possibility to enable a form of “window
shopping” on the Internet, where neighbor networks can be queried to see what is available “next
door.”

5.8.9 Multimedia collaboration control architecture

The current suite of multimedia collaboration tools (vic, vat, wb, etc.) is focused on use at the
desktop, with local control of each application through its user interface. In other words, the partic-
ipant is also expected to be the controller.

These applications are now finding use in less traditional environments. One concrete example
of this is the MASH Collaboration Laboratory, where media streams are sourced and sinked from a
large number of non-computer devices. These devices (cameras, TV monitors, A/V routing con-
trols, etc.) require remote (distributed) control to allow for the development of aggregate control
applications that can configure such devices in combination.

We are developing a control infrastructure that can support such applications and developing
prototypes for usability studies. The hope is to provide users with robust, intuitive room controls
rather than requiring an attending technician to take care of such details. Additionally, the distrib-
uted control infrastructure will provide the mechanisms through which remote participants’ appli-
cations can be controlled out-of-band (modulo policy-level access controls). Such mechanisms
would relieve the need for users to receive control instructions (i.e., “Please turn down your source
volume.”) from technicians or advanced users through a sideband (or worse, in-band) channel.

5.8.10 Conference control primitives for lightweight sessions

The goal is to design a set of control mechanisms from which a wide variety of conference con-
trol (e.g., floor control) policies can be built. The base component is an announce/listen protocol to
support “voting,” much like SCUBA sender interest messages or RTCP receiver reports. Atop this
message-passing framework are mechanisms for specifying the style of shared control (i.e., how
votes are tabulated) for each element in the collaboration session. Also, we envision incorporating
standard strong-crypto solutions for authentication and encryption to support access control lists
and for assigning participants to “ownership classes” for the various objects in the environment.

A related open issue we are exploring is whether individual receivers and application-specific
gateways should unify disparate announce/listen protocol messages. It seems that the “global, con-
stant-bandwidth” allocations used by these protocols (i.e, SAP, RTCP, SCUBA) should not simply
be summed as new protocols are deployed (a difficult predicament for low-bandwidth networks),
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but could instead share a single allocation. The hope would be to reduce the required announcement
bandwidth by avoiding repetition of redundant data and to reduce consensus latencies by allowing
individual protocols to adapt their share of a static allocation as necessary.

5.9 Conclusions

We propose that providing an “IP dial-tone” isn’t enough. We must augment basic IP connec-
tivity with adaptive network services that allow users to control and interact with their environ-
ment. The challenge is developing an open service architecture that allows heterogeneous client
devices to discover what they can do in a new environment, and yet which makes minimal assump-
tions about standard interfaces and control protocols. We present our approach to implementing
this, employing a few key techniques to realize this component of the architecture: 

• augmenting standard mobility beacons with location information, scoping features,
and announcements from a service discovery protocol; 

• using interface specifications that combine an interface definition language with
the semantics of a model-based user interface; and 

• hosting scripts in the infrastructure that:

• map exported object interfaces to client device control interfaces, 

• compose object interactions, and 

• automatically remap the destination of object invocations to changing server
locations. 

We also provide a detailed description of our prototype implementation of the service architec-
ture and a number of example services in use at the UC Berkeley CS building.
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6 The Network Stacks

In this section, we look at how the pieces fit together from the viewpoint of the network stacks.
There are three primary stacks that matter: the basestation, client, and proxy stacks. The proxy
really has two different kinds of stacks, those for clients and those for everything else such as dis-
tillers or servers. 

Only the client-side stack differs from standard TCP/IP. We modify or extend the network stack
at every level above the physical layer. In the next three subsections, we cover the three variations:
at the client, at the basestation, and at the proxy. The network stack at the (legacy) server is by def-
inition an unmodified TCP/IP stack. We will start with the basestation stack since it is the simplest
and then cover the client and proxy stacks. Figure 22 shows the three variations of the network
stack. 

6.1 The Basestation Network Stack

There are two kinds of basestations: black-box basestations and Dædalus-aware basestations.
The distinction is whether we can modify the code running on the basestation. For example, we
expect to have no influence over cellular telephone basestations, so they’re “black box”; but we
have complete control over WaveLAN basestations, so they are Dædalus-aware. It is important to
support both kinds so that we can improve performance when we have some influence, but still
interoperate when we have no influence.

6.1.1 Black-Box Basestations

We would still like to optimize both network and application performance to the extent possible
for black-box basestations. In the black-box case, the basestations is essentially invisible. It takes
responsibility for routing, horizontal handoff among its the cells of its network, and whatever bea-
coning is required to find client devices.

For vertical handoff, our only control over a black-box basestation is the decision whether to
use it at all. In particular, we use the basestation exactly when we use that particular network. In
such cases, the network typically assigns a particular IP address and we must use it if and only if we
use this network. Thus, vertical handoff is equivalent to switching the IP address of the client.

6.1.2 Dædalus-Aware Basestations

Given some control over the basestations, we can improve both the network performance and
the quality of vertical and horizontal handoffs.

Figure 22a shows the layers of the network stack at a Dædalus-aware basestation. Typically, the
basestation will have two physical networks: an ethernet to connect to the internet and the physical
network for which it is a basestation, such as WaveLAN.
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The following table summarizes each of the modules and our modifications.

TABLE 2. Network stack on the basestation.

Module Description Dædalus Modifications

Physical Low-level hardware and software for
the (wireless) network.

None

Link

Management of the shared media for
those networks that share (nearly all
wireless networks).

Link scheduling for wireless LANs
(see Section 3.3)
•Admission control and bandwidth 

allocation for MHs
•Link usage tracking and distribution 

of surplus bandwidth

Snoop
Monitors TCP traffic for packet loss
due to errors (not congestion). 

Snoop Protocol (see Section 3.1):
•Local retransmission of packets lost 

due to wireless errors

IP + Overlay

Standard IP Routing + Mobile IP + IP
Multicast

•State for each client: forwarding 
packets, buffering packets, or for-
warding only IP headers

•Fast horizontal handoff (based on 
multicast preloading of neighbor-
ing cells)

•Support for co-existence with stan-
dard IEFT Mobile IP at client

•See Section 2

Ethernet
Physical

(wireless)

Link Layer

IP + Overlay

TCP/UDP

Beaconing

Unmodified Layer

Modified Layer

Physical 1
(wireless)

Link Layer 1

IP + Overlay

Improved TCP/UDP

Sessions + NCM

Ethernet

IP

TCP/UDP

Sessions + NCM

Link Layer 2
Physical 2

(wired)

App A Proxy Front End
App B

ASL

User/Kernel Boundary

a) Basestation b) Client c) Proxy

FIGURE 22.  The three variations of network stacks: the basestation (a), the client
(b) and the proxy (c). Shaded regions indicated unmodified layers and the dashed
line indicates the likely location of the user/kernel boundary. Thus, unshaded
regions below this line imply kernel modifications. The “Sessions + NCM” layer
can go either into the kernel or a user-level library. Note that a client can run both
modified and unmodified apps simultaneously. 

Snoop

Decap Agent

Handoff
Controller



The Network Stacks DRAFT

67

6.2 The Client Network Stack

The client stack is also highly modified, and adds several new pieces to the stack from the bas-
estation:

TCP/UDP
Standard TCP/UDP. Used only to
communicate with the basestation,
rather than affecting client traffic.

None

Beaconing

Broadcasts network beacons for this
cell. Clients detect these beacons and
can then connect to the basestation.

•Notification of wired IP address
•Name server location, See Section 

5.2
•Possible piggybacked data, See Sec-

tion 5.4

Decap Agent

Communicates with Handoff
Controller on the client and controls
the routing state and Foreign/Home
agent mapping in the IP + Overlay
layer.

•TCP communication with the client
•Control over Overlay routing

TABLE 3. Network stack on the client.

Module Description Dædalus Modifications

Physical Layer
Low-level hardware and software for
the (wireless) network.

•API for determining whether net-
work interface is on/off and for 
measuring current signal quality

Link Layer
Management of the shared media for
those networks that share (nearly all
wireless networks).

Link scheduling for wireless LANs 
•Enforcement of bandwidth allocation

IP + Overlay

Standard IP Routing, Mobile IP, and IP
Multicast

•Track performance of multiple inter-
faces

•Signal higher layers when they 
should re-examine the choice of 
network

•Support for co-existence with stan-
dard IEFT Mobile IP in infrastruc-
ture

TCP/UDP
TCP/UDP with modifications for
improved performance on wireless and
asymmetric networks.

•Selective acknowledgments
•Asymmetric network enhancements
•See Section 3

TABLE 2. Network stack on the basestation.

Module Description Dædalus Modifications
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6.3 The Proxy Network Stack (for Clients)

At the proxy, the network stacks are much simpler. The wired side (used to communicate with
servers) is an unmodified stack that typically uses Ethernet. The connection to the base station also
uses Ethernet, but uses the Sessions and TCP protocol enhancements for better performance and
network monitoring. 

The following table describes the interesting network layers on the proxy:

6.4 Network Stack Summary

These stacks contain extensive modifications to traditional TCP/IP and higher layers. However,
each modification adds value and the changes are broken into discrete orthogonal sections: TCP
performance (Snoop protocol, selective acknowledgments and enhanced loss recovery, sessions,

Sessions + 
NCM

Multiplex many short connections
(such as HTTP) onto one long-lived
TCP connection, or “session”. Provide
network measurement statistics on a
per session basis.

•TCP multiplexing onto one connec-
tion

•Network monitoring for each session
•Signal user for significant changes in 

network performance
•See Section 3.4

Application
Support Layer 

(ASL)

Provide fine-grain application-level
control over the proxy. Examples
include control over distillation and
refinement.

•See XXXX

Handoff 

Controller

Monitor each of the physical networks
using their new API, control which
network to use.

•User-level process
•Directly monitors each network 

interface
•See Section 2.2

TABLE 4. Network stack used by the proxy to communicate with clients.

Module Description Dædalus Modifications

Sessions + 
NCM

Maintains long-lived session with the
client, containing many short
connections (typically HTTP).
Provides network performance
information to the proxy front end.

•TCP multiplexing onto one connec-
tion

•Network monitoring for each session
•Signal proxy front end for significant 

changes in network performance
•See Section 3.4

Proxy Front 
End

Interface to proxy for all of the traffic
to one client. Single flow of data
enables scheduling and control of
precious proxy-client bandwidth.

•Controls distillation based on current 
client and network parameters

TABLE 3. Network stack on the client.

Module Description Dædalus Modifications
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network connection monitoring), Overlay Networking, IETF Mobile IP compatibility, and proxy
and application support. The network services modules (authentication, name server, etc.) have no
effect on the stacks, although the network services module affects the contents of beacons.
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7 Summary

In this section, we revisit the original ten principles and summarize how each principle is met
by the architecture. By implementing these principles, we also meet the larger goal: best-quality
multimedia access anytime, anywhere with heterogeneous networks and clients in an infrastructure
that scales, remains available, and is easy to use.

7.1 The Principles Revisited

Principle 1: Heterogeneous Networks: The infrastructure must include wire-
less networks that have a mixture of global and indoor coverage,
thus requiring a heterogeneous collection of networks.

This principle is supported by a combination of Overlay Networking, TCP performance and the
proxy. Overlay networking provides detection of the available networks and manages handoffs
among them, both vertically and horizontally. The TCP improvements mitigates problems with
many of the wireless networks, such as high error rates and asymmetry, and the proxy tunes the
content to the available bandwidth, thus widening the range of practically useful networks.

Principle 2: Scalable: The infrastructure must scale to support millions of
users.

We assume that the physical network is scalable; this is true in practice simply because there is
no need for centralization. Similarly, the network services system is scalable because it is replicated
locally. The challenge is to scale the proxy, which is a shared resource so that it can be amortized
over many users. The proxy has been redesigned for scalability using a NOW cluster and extensive
multithreading. It also exploits burstiness is user needs to increase the aggregate number of sup-
ported clients.

Principle 3: Highly Available: The infrastructure must be available all of the
time.

We mostly assume the availability of individual networks such as Metricom. However, the
overlay networking concept increases overall availability dramatically by offering multiple net-
working options. Thus the loss of an individual network need not imply loss of service. In addition,
the proxy and network services systems provide highly available service through replication, auto-
matic failover, and fast restart of subsystems that fail. For example, the PTM has a primary and sec-
ondary and distillers will restart the PTM if they detect that it has failed.

Principle 4: Transparent Access: The detection and setup of a network con-
nection should be automatic. Users shouldn’t have to know what
networks are in range.

The principle is implemented by overlay networking and by the network services system. In
particular, overlay network handles the detection of networks and automatic connection to them,
while the services module provides automated location of common critical services such as DNS,
e-mail, and proxies. Thus users get access to all of these resources (and many others) simply by
being in range of a Dædalus-aware network.

Principle 5: Localized Service: The detection and setup of local network ser-
vices should be automatic. Users shouldn’t have to know what
services are available at their current location.
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This principle is the driving force behind the network services system. It handles the detection
of available services, automatic connection to critical services (like DNS), and even dynamic
extension of the client with new (local) abilities though code mobility.

Principle 6: Global Authentication: We must authenticate users using a glo-
bally available security infrastructure, such as public-key cryp-
tography or Kerberos.

Authentication is handled mostly by Kerberos, but we have extended Kerberos to impoverished
clients via Charon, which is part of the network services module. This allows reliable end-to-end
authentication that exploits the infrastructure without having to trust it. We use Kerberos’ cross-
realm authentication protocol to handle mobile hosts that appear in a foreign (untrusted) environ-
ment.

Principle 7: Multimedia: The infrastructure must support graphics, audio
and video in addition to text.

Multimedia support comes from the proxy, the optimized transport layer, and even overlay net-
working. The proxy tunes multimedia to the current format and bandwidth requirements, thus
enabling multimedia access in situations where it was previously impossible. The use of delivery
classes allows the network to understand the transmission requirement of multimedia data and opti-
mize and prioritize accordingly. Finally, the overlay system provides fast handoff by precharging
neighboring cells, which enables smooth audio and video across handoffs.

Principle 8: Performance: The user’s data should arrive as fast as possible.
This includes selecting the best network, optimizing the network
performance, and optimizing the content at the application level.

The optimal performance for the current client device and location comes from the combination
of the TCP optimizations, the overlay networking module, and the proxy. TCP optimizations miti-
gate wireless errors, improve throughput with long-lived sessions and support for asymmetric net-
works, and improve utilization through delivery classes and scheduling for shared links. The
overlay module helps by selecting the best network for the current location. Finally, the proxy
greatly improves performance (especially latency) by tuning the content for the current network
conditions, which it knows through network monitoring of the session with each client.

Principle 9: Heterogeneous Clients: Complexity should be pushed into the
infrastructure, where it can be amortized over all of the active
users. The infrastructure should support both inexpensive client
devices, such as smart phones, and more sophisticated comput-
ers, such as high-end laptops.

This is the driving force behind the proxy architecture. The only way handle both widely heter-
ogeneous clients and legacy servers is to adapt content dynamically for each client. The scalable
proxy solves this problem efficiently through datatype-specific distillation and refinement, and
through a scalable extendable architecture.

Principle 10: Dynamic Adaptation: The data sent to the user should be opti-
mized for timeliness, carrying the most information in the least
amount of time. The nature of this adaptation depends on the cur-
rent network, the preferences of the user, and the nature of the
data (text is much different than graphics).
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This principle is also tightly tied to the proxy. The proxy knows current network conditions,
tracks user preferences, caches object before and after transformation, and knows the nature of the
data because of the use of MIME types and datatype-specific distillation. This information, com-
bined with fast (real-time) transformation engines, allows the proxy to customize content com-
pletely for each client individually on every access.

7.2 Summary

Finally, we return to our original high-level goal:

“People and their machines should be able to access information and communicate
with each other easily and securely, in any medium or combination of media —
voice, data, image, video, or multimedia —  any time, anywhere, in a timely, cost-
effective way.” 

Dr. George H. Heilmeier
IEEE Communication

October 1992

How far are we away from this goal given our architecture? We believe that we have provided a
solution that handles the easy and secure multimedia access aspects, and provides timely cost-
effective service. The remaining issue is that of “any time, anywhere.” Assuming the wide deploy-
ment of wireless networks, which is a big assumption, we believe this architecture meets these
goals as well. In particular, overlay networking and the scalable, highly available infrastructure
allow clients to use any available network to obtain best-quality network access any time, anywhere
(supported by at least one network).
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8 Glossary

ASL See Application Support Layer, XXXX

BARWAN Bay Area Research Wireless Access Network: The testbed used in our project
to interoperate multiple wireless networks. The testbed currently includes
WaveLAN, IR, Metricom, Hughes DBS, CPDP, and cable modems.

Basestation The transmitter and router for a single cell of a wireless network. Typically,
the BS is connected via ethernet to the infrastructure components and pro-
vides beaconing, forwarding, and some measurement and control over the
cell.

Black-Box BS A Basestation that we have no control over in terms of modifying code run-
ning on the basestation. Examples are CDPD and Metricom.

Beacon Agent This agent sends out periodic beacon packets that are similar to Mobile IP
agent advertisements but may also contain additional information

BS See Basestation

CB See Coordination Bus

COA See Care-Of Address

Care-Of Address The visited locale’s temporary address for a mobile host, advertised to the
home agent (and to corresponding hosts using route optimization)

Cell A not necessarily contiguous physical area covered by a single transmitter in
a wireless network. Cells may overlap with both other cells of the same net-
work and with cells of other wireless networks.

Channel A multicast group with a symbolic name that can be looked up via the name
server. It is the unit of grouping in the coordination bus.

Coordination Bus This is the shared communication medium among the modules that collec-
tively form the proxy. The bus consists of a number of named channels to
which any module can broadcast or listen. Channels map one-to-one with
multicast IP addresses and the name server maps channel names to these
addresses.

Dædalus The networking half of this project, which includes all of the TCP and hand-
off stuff.

DBS Direct Broadcast Satellite

Decapsulation Agent This agent receives messages from the Handoff Controller and modifies
Overlap IP’s kernel-level translation tables in response to these messages.

DHCP Dynamic Host Configuration Protocol. This protocol can be used to assign a
local IP address to a device that just joined the local network.

FA See Foreign Agent

Foreign Agent This entity resides in “visited” systems, advertises its presence, and is used
to obtain a temporary care-of address (either multicast or unicast) for a
mobile host.
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GloMop The application services half of this project, which includes the proxy and
security aspects.

HA See Home Agent

Handoff The change from one network connection to another. Ideally, this transfer is
transparent to the application. If done at the link layer, which is common for
horizontal handoffs, it is transparent even to TCP.

Handoff Controller This component handles the transition when a mobile device moves from
one base station to another (horizontal handoff) or when a mobile device
moves from one network to another (vertical handoff). It sends the encapsu-
lation/decapsulation requests to the decapsulation agent. It makes all handoff
decisions due to mobility by listening to beacon packets sent by the beacon-
ing agent.

Home Agent As in Mobile IP: A router on a mobile node’s home network which tunnels
datagrams for delivery to the mobile node to its Care-Of Address when it is
away from home, and maintains current location information for the mobile
node.

Horizontal Handoff A handoff between cells within the same physical network, such as from one
Metricom pole-top basestation to another.

Metricom Makers of the Ricochet packet radio modem. The Metricom network is a
half-duplex store-and-forward network that is deployed in the Bay Area,
Portland, and Washington, D.C. The bandwidth is about 30 kbps, but the
latency can be seconds.

MH See Mobile Host

MN See Mobile Node

Mobile Host This is the client device; See Mobile Node

Mobile Node This terminology comes from Mobile IP: A host or router that changes its
point of attachment from one network or subnetwork to another.  A mobile
node may change its location without changing its IP address; it may con-
tinue to communicate with other Internet nodes at any location using its
(constant) IP address, assuming link-layer connectivity to a point of attach-
ment is available.

Mobile IP An extension to IP that supports mobility by forwarding packets through a
home agent, which tracks the location of the mobile host.

NCM Network Connection Monitor: Part of the sessions functionality that provides
feedback on the current state of the session. Statistics collected include the
packet loss rate and effective bandwidth of the transport-level connection.

Overlay IP Extensions to IP that support mobility and handoff across different networks.

Proxy A well-connected node that acts as an intermediary and translator between
poorly connected, heteregeneous clients and the rest of the internet.

PTM Proxy Transcoder Manager: The PTM manages distillers for the proxy front
ends. It controls a pool of distillers for each data type, provides load balanc-
ing, and handles spawning and killing distillers as the overall load varies
over time.
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Ricochet See Metricom

Session A long-lived connection over which many short TCP connections are multi-
plexed. It also provides connection statistics using the NCM.

User Control Panel This allows user-specific customization about the choice of network or base
station to connect to as well as the choice of handoff policy to use (e.g.
aggressive low-latency handoff vs. less aggressive high-latency handoff).

Vertical Handoff A handoff between different networks, such as from IR to WaveLAN.

VGW See Video Gateway

Video Gateway A distiller for real-time video traffic.

WaveLAN A radio-based local-area wireless network.
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