Lightweight Web-Browsing through HTML Validation

Kim M. Liu

Computer Science Division - EECS

University of California

Berkeley, CA 94720

Introduction

The popularity of the World Wide Web in recent years has made web-browsing a frequent activity for many people. At the same time, people are using hand-held computing devices as personal organizers, electronic mail devices, as well as calculators. Web-browsing is a natural extension to the functionality of these hand-held devices. However, web-browsers are usually resource-hungry programs. They tend to be large programs that consume megabytes of disk space and need large amount of virtual memory to run. They also put heavy workload on the graphics display system and the networking system compared to other simple programs on hand-held devices. In this project, we took several steps to simplify the task of web-browsing so that the web browser program can be smaller and it does not have to do as much at runtime. This is done by putting an intelligent proxy between the browser and the World Wide Web. This proxy is very similar to the one used in a firewall configuration where all HTTP [1] traffics to/from the outside world have to go through for security reason. The client sends regular HTTP requests to the proxy on behalf of the users. Then the proxy forwards these requests to the corresponding servers. When the servers send back responses, the proxy does not simply forward them back to the client. Instead, it examines the types of the entity bodies and converts all HTML [2] documents into a different format which is easier for the client to handle and more compact than standard HTML.

In order to make this new format more compact than HTML, we defined it as a binary file format. The file size reduction mainly comes from tag name and attribute name encoding. There is a predefined set of tags and their corresponding attributes that both the client and the proxy understand. Instead of using character strings to represent tag names and attribute names, the new format uses single-byte ID numbers. However, attributes values and plain texts are not encoded because they can be arbitrary character strings. On our three HTML test files, the file size reductions from this encoding scheme are 5.0%, 37.6%, and 20.6% respectively. On top of this, common file compression techniques can also be applied to the encoded stream to further reduce its size. However, we didn’t implement this because it is not clear that the reduction in network load is worth the software overhead incurred.

Encoding can only reduce the size of a document. It does not make it significantly easier for the browser to handle. Some of the complexities of a browser come from the fact that most HTML documents on the web have a number of syntactic and/or semantic errors. While a programming language compiler can simply reject incorrect source code file, a web browser has to tolerate various kinds of errors and still render as much detail as it can possibly figure out from an incorrect HTML document. Therefore, a significant amount of code has to be incorporated into a browser to handle errors in parsing HTML documents. In this project, we moved the burden of HTML parsing from the browser to the proxy. HTML documents are validated, normalized, and encoded by the proxy before being forwarded to the browser. Compared to parsing HTML documents, decoding the encoded documents is a trivial task for the browser. On our three HTML test files, the speedups in document parsing time are 2.65, 2.36, and 3.94 respectively.

The remainder of this paper is organized as follows. Section � REF _Ref379171572 \n �2� presents the overall architecture of the system. Section � REF _Ref379874666 \n �3���3���0� describes the HTML 3.2 formal specification. Section � REF _Ref379171613 \n �4� describes the validation, normalization, and encoding process in detail. Section � REF _Ref379171632 \n �5� presents the results on our sample HTML documents.

Architecture

The architecture of this system is very similar to a HTTP proxy server system. There is a single proxy server serving a number of web browser clients.

Figure 1 represents a regular client/server configuration. HTTP requests are sent directly from a client to the appropriate servers. To request the URL [3] "http://www.cs.berkeley.edu/Research/", the client sends the request line

"GET /Research/ HTTP/1.0" and other header information to the server www.cs.berkeley.edu directly.

����

��

�������

��

��

Figure 2 represents our client/proxy/server configuration. With the proxy, the client always sends requests to the proxy instead of individual servers. Then the proxy forwards the requests to the appropriate servers. In this case, the request line from the client becomes

"GET http://www.cs.berkeley.edu/Research/ HTTP/1.0". Note that the complete URL is given in this request line while a regular request line only has the absolute path name of the resource. After the proxy has forwarded a request to the appropriate server, it waits for a reply from the server. A reply consists of a status code, some header information, and the body of the resource (e.g. The content of a HTML document or a GIF file). If the content type is not HTML, then the proxy simply forwards the document to the client. If the content type is HTML, the proxy parses the document and converts it into a simpler format before sending it to the client. Even though the client is now expecting URL contents in the new format instead of HTML, the whole mechanism still fits nicely within the scope of HTTP. In HTTP 1.0, all URL contents have to be typed. For example, HTML contents are identified by the type "text/html" and GIF files have the type "image/gif". Web-browsers are supposed to examine the content types and handle documents accordingly. Therefore, we assigned the type "application/x�htmlcmp" to our new format. So in principle, HTML and the new format can coexist in the same web browser. They just require different content handlers. In a modular and extensible web browser (e.g. HotJava) where there is a generic API for individual content handlers to render different types of URL contents, we can unload the bulky HTML content handler and use a leaner content handler to handle the new format. Alternatively, the new format also makes it possible to build a lightweight browser that only understands the new format.

The HTML Document Structure

This section describes the way the proxy validates, normalizes, and encodes HTML documents. In order to understand this process, the reader has to look at HTML in a more formal manner. To many people, HTML simply consists of a set of tags that markup segments of plain text. The markups represent either certain formatting constructs (e.g. font changes, lists, or tables) or hyperlinks to other URLs. Commercial browsers are so tolerant to incorrect HTML documents that people generally think there is no rules at all in HTML. In fact, HTML documents are supposed to follow a certain structure specified by the HTML standard. If a HTML document does not follow this structure, sometimes it would be impossible for a HTML parser to unambiguously parse it. The formal definition of HTML will be discussed in the next section.

There is also a number of so-called HTML parsers in the public domain. They actually function as a HTML tokenizer that takes a HTML character stream as input and generates as output a series of tokens that represent start tag, end tag, and plain text. These parsers generally do not parse the tokens into a parse tree. In order to render a HTML document, a browser has to handle the matching of start tags to their corresponding end tags, and tag nesting as well. This would be trivial if every start tag had a matching end tag. Unfortunately there is a number of end tags (and even start tags) in HTML that can be legitimately omitted. For example, people rarely write the end tag to denote the end of a list item element. There are many ad-hoc ways a browser can use to cope with these special cases so that it can come up with the correct parse trees. Instead of relying on ad-hoc ways, our proxy parses HTML documents in a rigid manner based on the formal definition of HTML.

The HyperText Markup Language (HTML) is an application of ISO Standard 8879:1986 Information Processing Text and Office Systems; Standard Generalized Markup Language (SGML). SGML is a language that defines the structures of documents. For each type of document, there is a Document Type Definition (DTD) that defines its structure. For example, the structure of a book consists of a cover page, followed by the table of content, and a number of chapters. Under each chapter, there is a chapter title followed by a number of paragraphs, lists, figures, and tables. All of these are SGML elements defined in the DTD. In the document, a SGML element appears in the form of a start tag, followed by its content, and an end tag. Each element has a content model showing which sub-elements can be embedded within it. A content model can also allow plain texts to be embedded within an element. The DTD basically defines a document as a hierarchy of elements. There are many constructs in SGML to describe a content model. For example, a sequence connector (a comma ,) connects elements which must occur in the indicated sequence. When the sequence in which the elements are used is not fixed, sub-element names should be connected with an and connector (&) rather than the sequence connector. If more than one element could be applicable at a given point, the relevant element names can be connected by an or connector (|). The use of each embedded sub-element can be further qualified by the addition of an occurrence indicator. The plus occurrence indicator (+) defines repeatable elements that must occur at least once at the current level. The opt occurrence indicator (?) is for optional elements that can occur at most once at the current level. The rep occurrence indicator (*) is similar to the plus occurrence indicator but the optional elements do not have to occur at least once in the current level.

Both HTML 2.0 [4]and the new HTML 3.2 have their own DTDs. Our system is based on the HTML 3.2 DTD, which is an attempt to standardize a number of non-standard extensions made popular by Netscape and Microsoft. Figure 3 shows the hierarchical structure of a HTML 3.2 document. Capital letter names represents elements while small letter names that start with a percent sign (%) represent groups of elements. Groups are expanded in separate diagrams for manageability. For the purpose of this report, #PCDATA is simply treated as plain text. In these diagrams, solid lines represent element and embedded sub-elements relationship. Dotted lines simply represent group name expansions. They do not introduce extra levels in the element hierarchy. Furthermore, “leaf node” elements (e.g. IMG, BR, and HR) have empty contents. They appear in the document as standalone start tags without embedded contents and end tags. For simplicity, a lot of SGML details have been omitted in the diagrams. For example, connectors and occurrence indicators are not shown. However, in most cases, sub-elements can occur in any orders any number of times. Some notable exceptions include: 1. The HTML element has exactly one HEAD element followed by one BODY element. 2. The HEAD element must have exactly one TITLE element. 3. A TABLE element has an optional CAPTION element followed by at least one TR element. Readers are suggested to refer to the DTD for all the details. �
�����������������������������

�

�

�

�������������������

�

�

�

�
�

�

�

�

�
�

��

So far, parsing HTML documents seems to be a matter of keeping track of the nesting of elements, matching start and end tag pairs, and making sure elements do not appear in places where they are not defined. Even though the error-checking process involved in the last part is troublesome enough, there is at least one more aspect of HTML that further complicates the parsing process. The problem has to do with the “tag omission” feature of SGML. Normally, each element has a start tag, followed by the content, and then an end tag. However, both the start tag and the end tag of an element can be declared as optional. It means they can simply be omitted in the document. For example, both start tags and end tags are optional for the elements HTML, HEAD, and BODY. The elements P, LI, and TR have optional end tags. Elements that have empty contents (e.g. IMG, BR, and HR) must declare their end tags as optional because they serve no purpose. Of course, this tag omission feature can be used only if it does not create any ambiguity in the DTD. Therefore a real HTML parser has to do much more than simply matching pairs of start and end tags. It has to unambiguously infer missing start tags and end tags in order to construct the correct parse trees. For example, given the following HTML document, a HTML parser should produce the following parse tree by inferring missing tags.

Document:

<TITLE>This is the title</TITLE>

<P>This is a <I>line</I><HR>�

Parse Tree:

<HTML>

 <HEAD>

 <TITLE>

 "This is the title"

 </TITLE>

 </HEAD>

 <BODY>

 <P>

 "This is a "

 <I>

 "line"

 </I>

 </P>

 <HR>

 </HR>

 </BODY>

</HTML>

Note that the </P> end tag is inserted before the <HR> start tag because the content model of an element P does not have any element HR. In fact, the element P is a particularly confusing one. According to the DTD, an element P represents a paragraph. Its content can be anything from the %text group and it has optional end tag. However, many people treat it as a paragraph break with empty content. Perhaps due to this confusion, Netscape’s browser somehow renders the following two identical pieces of HTML differently.

<P>foo

<P>bar

�

<P>foo</P>

<P>bar</P>

�
�
Validation and Normalization Overview

HTML parsing, particularly the process of inferring missing start tags and end tags, is not trivial. It usually involves the use of a large table that has an entry for each element defined in the DTD. Each entry contains information about the content of the corresponding element. It also tells the parser whether that element’s start and/or end tags are optional. For every tag and piece of plain text the parser sees, it has to refer to this table to find out whether it should infer a missing tag or if it is legal at all for that tag or text to appear in that particular place in the document. This motivated us to move the burden of HTML parsing to the proxy to off-load the client.

The proxy validates and normalizes HTML documents received from the servers and then encodes them in a simple binary file format for the client to process. The validation process ensures the structures of the documents the client received are 100% HTML 3.2 compliant, even though they are encoded in a binary format. This eliminates the need to do error-checking from the client’s parser. Normalization is the process in which the proxy inserts missing start tags and end tags into the documents. With this help from the proxy, the client no longer has to refer to the formal structure defined by SGML to parse HTML documents. All it has to do is to use a stack-based mechanism to handle tag nesting. This is a step towards a lightweight web browser on hand-held devices.

Generic SGML parsing

SGML is a general purpose language to define document structures. It has been used in various fields and is starting to gain more popularity. Generally, a Document Type Definition (DTD) is written to define the structure of the document type in use. Then the DTD is sent together with the actual document to the receiver. Alternatively, the sender can refer to a well-known DTD instead of sending one with the document. Upon receiving a document, a generic SGML parser will first analyze the DTD and then parse the document accordingly. Since SGML is rather complicated and has plenty of rules, the complexity of a generic SGML parser is enormous. Every time the parser parses a document, it has to analyze an arbitrary DTD and dynamically generate a parsing engine to parse the document. There are generic SGML parsers available both commercially and free of charge. Among them, James Clark’s ("http://www.jclark.com") sgmls and SP are the best-known ones. Theoretically, a web browser can use a generic SGML parser to parse HTML documents. However, this is obviously not very efficient. Given the fact that a web browser only has to handle a single type of SGML documents (i.e. HTML), it would be much easier to use a custom-built parser. Besides, since the debut of the HTML 2.0 DTD, a number of unofficial HTML extensions have been introduced by various vendors. Some of them do not even have formal DTDs behind them. Therefore, it would be impossible to use a generic SGML parser to parse them. Hopefully, the new HTML 3.2 will standardize all these extensions.

Custom-built HTML parser

This section describes the algorithm used in our custom-built HTML parser. The most important concept defined in a DTD is the content model of each element. Among other things, an element’s content model describes the sub-elements that can be embedded within this element, as well as the use of optional start tag and end tag. For each HTML element, our parser maintains a table entry that contains several pieces of information about the element. They are the name of the element, a set of valid attributes, a set of valid children elements, the content model type, the optional start tag flag, and the optional end tag flag. The name of the element is simply a string used to compare against tag names found in HTML tags. The set of valid attributes is a collection of attribute names that are permitted in the corresponding element’s start tag. The set of valid children elements is a collection of sub-elements that can be embedded within the element. The content model type can either be mixed content or element content. Mixed content means plain text is allowed directly under the element. Element content means only sub-elements and space characters are allowed, and spaces are ignored. The two flags denote whether optional start and end tags are allowed.

Our recursive-descent parser gets its input from a tokenizer. There are start tag tokens, end tag tokens, and plain text tokens. An element consists of its start tag, all its embedded sub-elements and plain text, followed by its end tag. Both the start tag and the end tag can be missing as specified in the element table. The parsing process is basically a series of recursive calls to the function parseElement(). The following is the pseudo-code for this function.

/*

 * This function returns a sub-element of element that satisfies

 * either of the following requirements. It returns -1 if no

 * such sub-element exists.

 * Requirements:

 * 1. The sub-element has optional start tag and it's content

 * model is Mixed Content.

 * 2. The sub-element has optional start tag and there is an

 * element down its element hierarchy that has Mixed Content

 * content model, and all the elements on the path down the

 * element hierarchy have optional start tags.

 */

Element findNonEmptyContentEmpty(Element element)

{

 if (such a sub-element exists)

 return sub-element;

 else

 return -1;

}

/*

 * This function returns a sub-element of element that satisfies

 * either of the following requirements. It returns -1 if no

 * such sub-element exists.

 * Requirements:

 * 1. The sub-element has optional start tag and it's content

 * model contains newElement.

 * 2. The sub-element has optional start tag and there is an

 * element down its element hierarchy whose content model

 * contains newElement, and all the elements on the path down

 * the element hierarchy have optional start tags.

 */

Element findAllowableElement(Element element, Element newElement)

{

 if (such a sub-element exists)

 return sub-element;

 else

 return -1;

}

Token parseElement(Element currElement, Token nextToken)

{

 while (nextToken is not end-of-file) {

 if (nextToken is a text token) {

 if (currElement's content model is Mixed Content) {

 output the text in nextToken;

 nextToken = getNextToken();

 }

 else if (content model is Element Content) {

 if (text is all space characters) {

 /* ignore it */

 nextToken = getNextToken();

 }

 else {

 /* See if we can find a place down the element hierarchy

 * where we can put this piece of text in. */

 subElement = findNonEmptyContentElement(currElement);

 if (subElement != -1) { /* Such an element is found */

 /* So we found out we can embed the text some level

 * inside subElement. */

 /* Here we infer its missing start tag */

 output the start tag of subElement;

 /* Recursively parse subElement */

 nextToken = parseElement(subElement, nextToken);

 output the end tag of subElement;

 if (nextToken is empty)

 nextToken = getNextToken();

 }

 else if (currElement's end tag is optional) {

 /* We infer currElement's end tag here

 * and we are done parsing currElement. */

 return nextToken;

 }

 else {

 error "Text is not allowed in this element";

 nextToken = getNextToken();

 }

 }

 }

 }

 else if (nextToken is a start tag token) {

 if (the tag name is unknown) {

 error "Unknown tag";

 nextToken = getNextToken();

 }

 /* Now we have to start a new element according to this

 * start tag. */

 else if (the new element is allowed in currElement) {

 output the start tag of the new element;

 nextToken = parseElement(the new element);

 output the end tag of the new element;

 if (nextToken is empty)

 nextToken = getNextToken();

 }

 else {

 /* See if we can find a place down the element hierarchy

 * where we can put this new element in. */

 subElement = findAllowableElement(currElement,

 the new element);

 if (subElement != -1) { /* Such an element is found. */

 /* We infer the start tag of subElement here */

 output the start tag of subElement;

 /* Recursively parse subElement. */

 nextToken = parseElement(subElement, nextToken);

 output the end tag of subElement;

 if (nextToken is empty)

 nextToken = getNextToken();

 }

 else if (currElement's end tag is optional) {

 /* We infer currElement's end tag here

 * and we are done parsing currElement. */

 return nextToken;

 }

 else {

 error "This start tag is not allowed here";

 nextToken = getNextToken();

 }

 }

 }

 else if (nextToken is an end tag token) {

 if (the tag name is unknown) {

 error "Unknown tag";

 nextToken = getNextToken();

 }

 else if (this is the end tag of currElement) {

 /* We have a normal end of element situation here */

 return empty token;

 }

 else if (currElement's end tag is optional) {

 /* We infer currElement's end tag here

 * and we are done parsing currElement. */

 return nextToken;

 }

 else {

 error "This end tag is not allowed here";

 nextToken = getNextToken();

 }

 }

 }

 /* We reach here upon end-of-file */

 make up and return an end tag token for the current element;

}

/* This overloads the parseElement function */

/* This is used if the caller does not have the lookahead token */

Token parseElement(Element currElement)

{

 return parseElement(currElement, getNextToken());

}

main()

{

 /* DOCUMENT is an imaginary element that contains the base

 * element HTML. */

 parseElement(DOCUMENT);

}

The parser consumes input tokens from the tokenizer. On the output side, it generates back a stream of tokens. Since the output token stream has been validated and normalized, it should be as easy for the client to process as a parse tree. Usually, input tokens simply pass through the parser. However, when a token appears in an illegal way, it will be ignored and thrown away. Sometimes the parser also has to infer and generate missing start tag and end tag tokens.

Given a plain text token, the parser first checks if the current content model allows plain text. If not, it tries to find an inferable path down the element hierarchy until it finds an element whose element content allows plain text. On its way down, the parser has to make sure all the embedded elements on the path have optional start tags. This is essential because the embedded elements on the path cannot be inferred unless their start tags are optional. With such an inferable path found, the parser infers and inserts the start tags of the elements along the path to the output token stream. If no such path can be found, the parser checks if the current element’s end tag is optional. If it is, the parser then infers this end tag and returns to the previous element nesting level.

Given a start tag token that represents the start of a new element, the parser first checks if this new element is allowed in the current content model. If it is, the parser recursively parses this new element. If it is not, the parser has to once again search down the element hierarchy to find an embedded element whose content model allows this new element. Similarly, the parser has to make sure all the elements on the path have optional start tags. If no such an element can be found, the only possibility left is that the current element has an optional end tag so that the parser can infer it and return to the previous element nesting level.

Finally, given an end tag token, the parser first checks if this is in fact the end tag of the current element. If it is, then the current element level is complete and the parser returns to the previous element nesting level. If it is not, the parser tries to infer the current element’s end tag if it is optional so that it can pass this unmatched end tag to the previous element nesting level.

The whole parsing process is started by parsing an imaginary element called DOCUMENT, which contain the sub-element HTML.

Encoding

The validated and normalized HTML documents have to go through a simple encoding process before they are sent to the client. Tag names and attribute names are encoded as one-byte values. This reduces the sizes of the documents and saves the client from doing string comparisons on names. In the encoded stream, the null character is used as delimiter in various places. It is safe to do so because null characters do not appear in the original HTML documents. In the encoded stream, there are three types of content units. They are start tags, end tags, and plain texts. They are handled as separate units in the encoding process. Start tags and end tags are encoded while plain texts are unchanged. The encoded format of a start tag has this general form:

NULL TAG-ID ?ATTR-ID ATTR-VALUE NULL ...? NULL

The leading single null character denotes a start tag. The tag ID is a byte and its value represents a particular element. Then there is an optional list of attribute ID - attribute value pairs. An attribute ID is a byte and it is similar to the tag ID. An attribute value is the exact string that appears in the original HTML document. Each pair is ended with a null character. Then there is an extra null character to end the whole start tag unit. The encoded format of an end tag has this general form:

NULL NULL TAG-ID

The leading double null character distinguishes an end tag unit from a start tag unit. The tag ID’s value represents a particular element. No trailing null character is needed because there is no ambiguity.

Client-side decoding

The decoding process at the client side is completely trivial. Besides the fact that its input is very easy to parse, the client does not even have to do string comparisons because the tag names and attribute names are already encoded. Since the input has already been validated and normalized, it does not have to include a complicated HTML parser and lengthy error handling routines. All it needs is a stack-based mechanism to handle the tag nesting. This helps reduce the client program size and running time.

Results

The proxy is written in Java for its portable multithreading support and its HTTP class library. It handles concurrent client requests through multithreading.

The client is written in C with a Tcl/Tk GUI browser that supports a limited set of HTML tags. Java is not used because its GUI support is not as powerful as Tk.

We have selected three HTML files for our performance evaluation. The first one is the specification of the HTML 3.2 standard itself. It is a rather long document (111KB) but a large portion of it is plain text. The second one is Netscape’s home page and the last one is Yahoo’s home page. They are chosen because they are one of the most frequently viewed web pages. They both have higher tag-to-plain-text ratio due to their fancier formatting.

Reduction in document size

The three sample files are encoded by the proxy into the binary format. � REF _Ref379188955 * MERGEFORMAT �Table 1� shows the respective document size reductions.

�
HTML 3.2�
Netscape�
Yahoo�
�
Original Size�
113166�
34195�
8470�
�
Encoded Size�
107484�
21334�
6722�
�
Size reduction�
5.0%�
37.6%�
20.6%�
�
Table � SEQ Table * ARABIC �1�: Document size reduction

The reduction is lower in the HTML 3.2 specification document because a large portion of the document is plain text, which is not encoded. While in the Netscape home page, a portion of the document is a Java Script program, which is not understood by the client. So the proxy simply throws that away. That explains the high document size reduction. Similarly, documents with lengthy comments will also be shortened significantly by this process.

Speedup in document parsing time

The time spent in parsing the original documents is compared to the time spent in decoded the encoded documents. In order to have a fair comparison of the performance of the proxy’s parsing engine and the client’s decoding engine, a Java version of the client’s decoding engine is used in the tests. For each sample document, we measured the time spent in parsing or decoding.. The time spent in user space is reported in � REF _Ref379189091 * MERGEFORMAT �Table 2�.

�
HTML 3.2�
Netscape�
Yahoo�
�
Parsing Time�
24.34 sec�
7.16 sec�
2.13 sec�
�
Decoding Time�
9.18 sec�
3.04 sec�
0.54 sec�
�
Speedup�
2.65�
2.36�
3.94�
�
Speedup with normalization�
2.52�
1.47�
3.13�
�
Table � SEQ Table * ARABIC �2�: Speedup in document parsing time

In order to show that the speedup is mainly a result of the reduction in complexity in the decoding process instead of the reduction in file size, we normalized the time spent in parsing and decoding by the corresponding file size and then calculated another speedup value from the normalized time.

Since both the parsing engine and the decoding engine are run as interpreted Java byte code, they are relatively slow compared to compiled C code. However, this does not have any effect on our comparison.

Program code size

Finally the sizes of the parser and the decoder are compared to illustrate the relative complexity of the two programs. Besides the fact that the parsing routine is more complicated than the decoding routine, the parser also has a table in it to indicate the hierarchical relationship of the various HTML elements.

�
Java Source Code�
Java Byte Code�
�
Parser�
25477�
17914�
�
Decoder�
1383�
1293�
�
Table � SEQ Table * ARABIC �3�: Program code size comparison

Summary

This report described the design and implementation of a web-browsing system that utilizes a proxy server to off-load the clients. From our sample HTML documents, we achieved document size reduction from 5.0% to 37.6%, and processing time speedup from 2.36 to 3.94 times. We also reduced the executable program size of the HTML parser on the client by 13.85 times. All these contribute to the feasibility of lightweight web-browsing.

References

T. Berners-Lee, R. Fielding, H. Frystyk, “Hypertext Transfer Protocol – HTTP/1.0”, RFC 1945, MIT/LCS, UC Irvine, May 1996.

Dave Raggett, “HTML 3.2 Reference Specification”, W3C Recommendation 14 Jan 1997.

R. Fielding, “Relative Uniform Resource Locators”, RFC 1808, UC Irvine, June 1995.

T. Berners-Lee, D. Connolly, “Hypertext Markup Language - 2.0”, RFC 1866, MIT/LCS, November 1995.

�PAGE �

�PAGE �1�

Client

Server

Server

Client

Proxy

Server

Client

Client

Client

Client

Server

Server

Server

Figure 1: Client/Server Configuration

Figure 2: Client/Proxy/Server Configuration

HTML

BODY

HEAD

TITLE

ISINDEX

BASE

SCRIPT

STYLE

META

LINK

#PCDATA

#PCDATA

#PCDATA

%body.content

H1 - H6

%text

%block

ADDRESS

P

%text

%text

%text

Figure 3a: The top level structure of a HTML 3.2 document

%text

#PCDATA

%font

%phrase

%special

%form

%text

%text

TT

I

B

U

STRIKE

BIG

SMALL

SUB

SUP

EM

STRONG

DFN

CODE

SAMP

KBD

VAR

CITE

Figure 3b: The %text element group

%block

%list

ISINDEX

HR

%text

TABLE

CAPTION

TR

TH

TD

%body.content

%body.content

DL

DT

DD

%text

%text

%block

PRE

%text

P

DIV

%body.content

CENTER

%body.content

BLOCKQUOTE

%body.content

FORM

%body.content

Figure 3c: The %block element group

%special

A

IMG

APPLET

FONT

BASEFONT

BR

SCRIPT

MAP

%text

%text

AREA

%text

PARAM

Figure 3d: The %special element group

%form

SELECT

#PCDATA

TEXTAREA

INPUT

OPTION

#PCDATA

%list

UL

LI

%text

%block

DIR

LI

%text

MENU

LI

%text

OL

LI

%text

%block

Figure 3e: The %list element group

Figure 3f: The %form element group

