
Vertical Handoffs in Wireless Overlay Networks

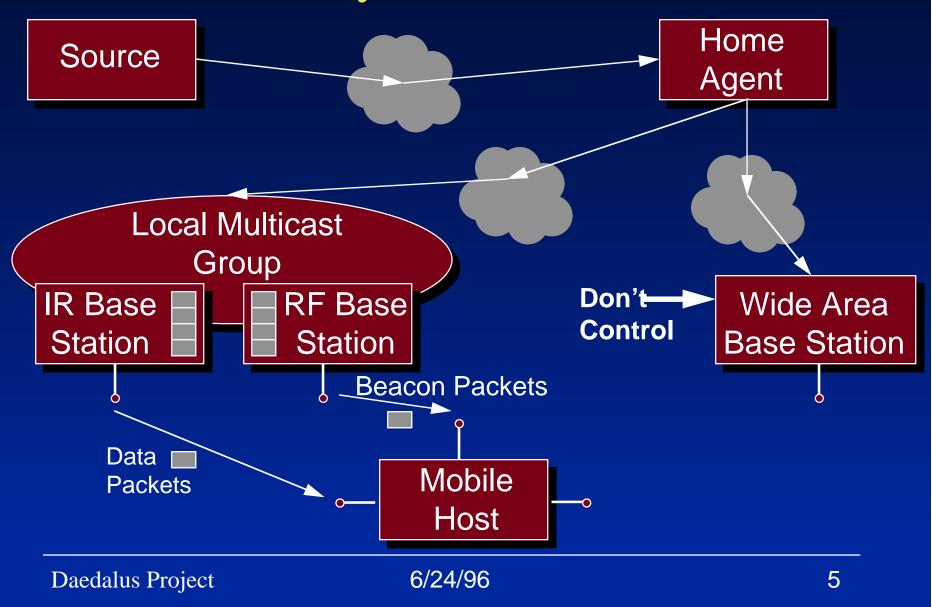
Mark StemmRandy H. KatzDaedalus GroupDepartment of EECS,University of California at Berkeley

Wireless Overlay Structure

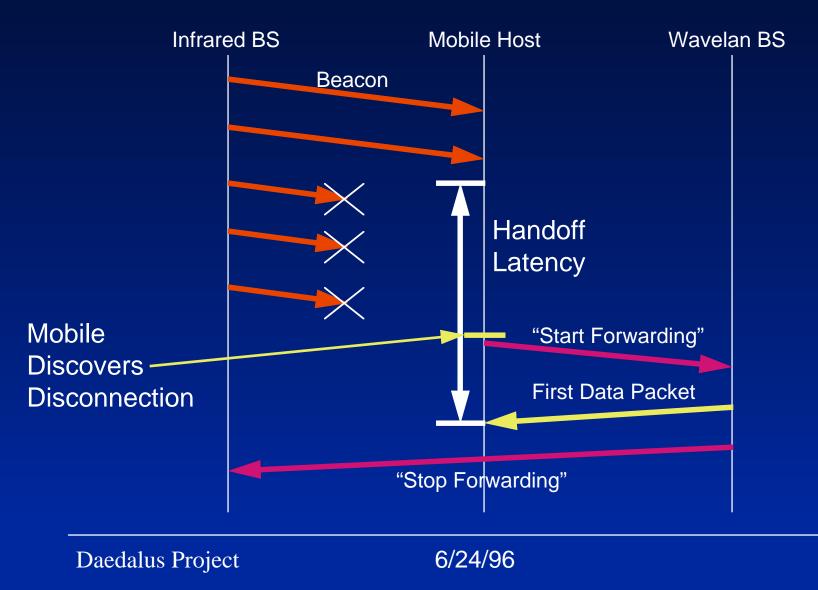
- *Horizontal Handoffs* within an overlay.
- *Vertical Handoffs* between overlays.
- *Upward handoffs* to overlay with larger cell size.
- *Downward handoffs* to overlay with smaller cell size.

Daedalus Project

6/24/96


Differences in Vertical Handoffs

• "Interface diversity" - Can send data over multiple NIs at once • In range of multiple BSs all the time – Due to overlapping nature of cells • The choice of the "best BS" is not obvious – Hard to compare signal strength of IR, RF – Our heuristic: *stay in the lowest overlay* possible for as long as possible


Challenges

- Low latency
- Minimize power drain
- Minimize bandwidth overhead
- Discover the "right" time to hand off in a wireless channel that is hard to characterize
- Work with commercially available devices:
 - No hardware carrier tone
 - Can't control the infrastructure

Basic System Overview

Basic System Handoff (Upward)

Metrics

- Handoff Latency=Ld+Lp+Ln+Lf
 - Ld=Time to *discover* that overlay is gone
 - Lp=Time to *power* on new NI
 - Ln=Time to notify new base station to forward
 - Lf=Time for new BS to *forward* 1st packet to MH
- Bandwidth Overhead
- Power Drain

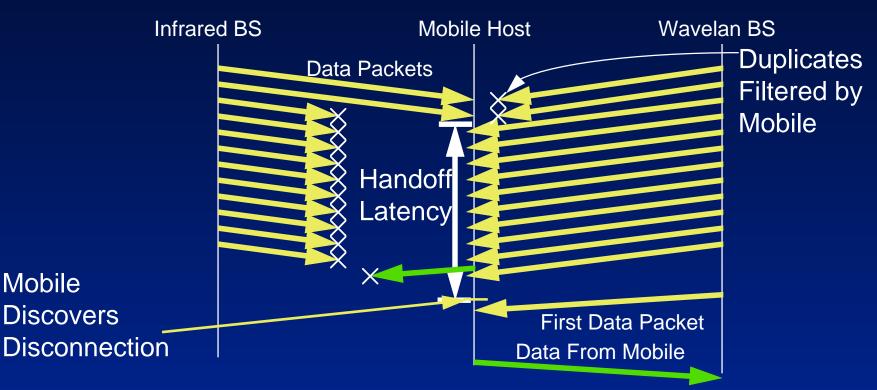
Performance of Base System

• Handoff Latency

- Ld=2.5 secs
- Lp=100ms for IR->WL, 6 sec for WL->Metricom
- Ln=5 ms for IR->WL, 100ms for WL->Metricom
- Lf=8 ms for IR->WL, 126ms for WL->Metricom
- Ld is everything!!
- Bandwidth Overhead
 - 1 beacon packet (64 bytes) per second
- Power Consumption
 - Lower interface only (350mW IR/1100 mW Wavelan)

Optimizations to Base System

- Reduces Ld with an increase in power or bandwidth overhead
- When to use them:
 - At user's request
 - Low received signal strength
 - Geographic hints
 - Increased handoff frequency

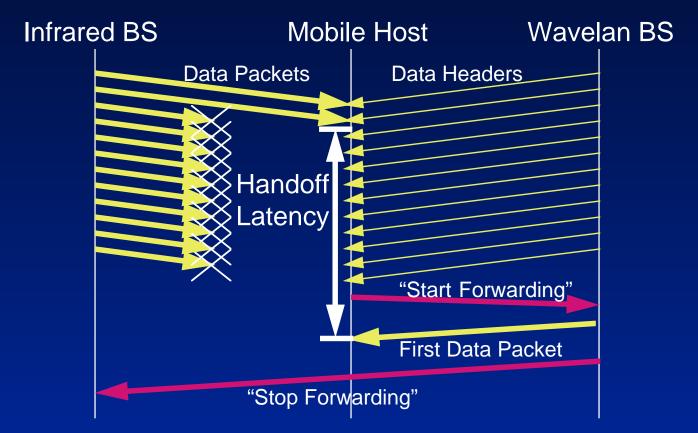

Optimizations(contd.)

• Fast Beaconing – Send beacons faster than once per second Packet Doublecasting – Send packets over both interfaces – Like "soft handoffs" in IS-95 • Header Doublecasting – Send packets over 1 interface and headers over other interface

Fast Beaconing Performance

- With a beacon spacing of 200ms...
- Handoff Latency
 - Ld=500ms
 - Lp, Ln, Lf same as basic system
- Bandwidth Overhead
 - 5 beacon packets (310 bytes) per second
- Power Drain
 - Same as basic system

Packet Doublecasting Handoff


- Data to mobile is never lost during handoff
- Data from mobile is lost during handoff

Packet Doublecasting Performance

• Handoff Latency

- Ld=200ms for IR->WL, 1.5 sec for WL->Metricom
- Lp, Ln, Lf=0
- Bandwidth Overhead
 - Equal to data rate: 500 kbits/sec for IR->WL, 50 kbits/sec for WL->Metricom
- Power Drain
 - Both NIs must be on: 1450mW IR->WL, 1450mW WL->Metricom

Header Doublecasting Handoff

• Data to and from mobile is lost during handoff

Header Doublecasting Performance

• Handoff Latency

- Ld=200ms for IR->WL, 1.5 sec for WL->Metricom (!!)
- Lp=0
- Ln=Same as Basic System
- Lf=Same as Basic System
- Bandwidth Overhead
 - 16.6 kbits for IR–>WL, 1.66 kbits for WL–>Metricom

• Power Drain

• Same as packet doublecasting

Summary

- Basic system has a high handoff latency due mostly to the "discovery time" Ld
- Fast beaconing decreases handoff latency with increased bandwidth overhead
- Packet doublecasting achieves low latency with least disruption at a considerable cost
- Header doublecasting achieves same handoff latency as packet doublecasting with a dramatically reduced cost
- Best Case=200-500ms with 1% overhead.